1
|
Bohra A, Tiwari A, Pareek S, Joshi R, Satheesh Naik SJ, Kumari K, Verma RL, Parihar AK, Patil PG, Dixit GP. Past and future of cytoplasmic male sterility and heterosis breeding in crop plants. PLANT CELL REPORTS 2025; 44:33. [PMID: 39841239 DOI: 10.1007/s00299-024-03414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops. The CMS system has illustrated its potential as a robust pollination control mechanism to support the billion-dollar seed industry. In plants, CMS arises due to a genomic conflict between mitochondrial open reading frames (orfs) and nuclear-encoding restoration-of-fertility (Rf) genes, leading to floral abnormalities and pollen sterility. Research on pollen sterility and fertility restoration provides deeper insights into cytoplasmic-nuclear interplay in plants and elucidates key molecular targets for hybrid breeding in crops. More recently, programmable gene editing (e.g., TALEN, CRISPR-Cas) has emerged as a promising tool to functionally validate CMS and Rf genes and obviate the need for pollen donors or Rf-genes for hybrid breeding. Modern genomic prediction models have allowed establishment of high-performing heterotic groups and patterns for sustaining long-term gain in hybrid breeding. This article reviews latest discoveries elucidating the molecular mechanisms behind CMS and fertility restoration in plants. We then present our perspective on how evolving genetic technologies are contributing to advance fundamental knowledge of the CMS-Rf genetic system for producing crop hybrids with high heterosis.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India.
| | - Abha Tiwari
- ICAR-National Institute of Biotic Stresses Management, Baronda, Chhattisgarh, 493225, India
| | - Shalini Pareek
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - S J Satheesh Naik
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Khushbu Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ram Lakhan Verma
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ashok K Parihar
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Prakash G Patil
- ICAR-National Research Centre On Pomegranate (NRCP), Solapur, 413 255, India
| | - Girish P Dixit
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| |
Collapse
|
2
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Li Z, Li G, Li F, Zhang S, Wang X, Wu J, Sun R, Zhang S, Zhang H. Development of Ogura CMS Fertility-Restored Interspecific Hybrids for Use in Cytoplasm Replacement of Golden-Heart Materials in Brassica rapa. Genes (Basel) 2023; 14:1613. [PMID: 37628664 PMCID: PMC10454034 DOI: 10.3390/genes14081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ogura cytoplasmic male sterility (CMS) is one of the important methods for hybrid seed production in cruciferous crops. The lack of a restorer of fertility gene (Rfo) in Brassica rapa L. restricts the development and utilization of its germplasm resources. In this research, Brassica napus with the Rfo gene was used to restore the fertility of Ogura CMS B. rapa with the golden heart trait. Through the distant cross of two B. rapa and four B. napus, six interspecific hybrid combinations received F1 seeds. The six combinations were different in seed receiving. By morphological observation and molecular marker-assisted selection (MAS), in F1, individuals containing the Rfo gene all appeared fertile, while those without it remained male-sterile. The pollen viability of the fertile individuals was measured, and the fertile lines of the six interspecific hybrid combinations were different (40.68-80.49%). Three individuals (containing both Rfo and GOLDEN genes) with the highest pollen vitality (≥60%) were backcrossed with fertile cytoplasmic B. rapa, resulting in a total of 800 plants. Based on the MAS, a total of 144 plants with GOLDEN but no Rfo were screened (18%). Moreover, through morphological investigation, one individual with normal cytoplasm, stable fertility but without the restoring gene Rfo, the GOLDEN gene, and morphological characteristics similar to those of B. rapa was obtained. These results increased the diversity of B. rapa germplasm and provided a new method for the utilization of CMS germplasm in Brassica crops.
Collapse
Affiliation(s)
- Ze Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (G.L.); (F.L.); (S.Z.); (X.W.); (J.W.); (R.S.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Improvement of Resistance to Clubroot Disease in the Ogura CMS Restorer Line R2163 of Brassica napus. PLANTS 2022; 11:plants11182413. [PMID: 36145814 PMCID: PMC9504965 DOI: 10.3390/plants11182413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Oilseed rape (Brassica napus) has significant heterosis and Ogura CMS is a major way to use it. Ogura CMS has the advantages of complete and stable male sterility and easy-to-breed maintainers. Therefore, to breed better restorers has become an important goal for this system. Incidentally, clubroot is a soil-borne disease that is difficult to control by fungicidal chemicals, and it has been the main disease of oilseed rape in recent years in China, severely restricting the development of the oilseed rape industry. At present, the most effective method for controlling clubroot disease is to cultivate resistant varieties. One Ogura CMS restorer line (R2163) has shown much better combining ability, but lacks the clubroot disease resistance. This study was carried out to improve R2163 through marker-assisted backcross breeding (MABB). The resistant locus PbBa8.1 was introduced into the restorer R2163, and we then selected R2163R with clubroot disease resistance. Using the new restorer R2163R as the male parent and the sterile lines 116A and Z11A as the female parent, the improved, new resistant hybrids Kenyouza 741R and Huayouza 706R performed well, providing strong resistance and good agronomic traits. This work advances the utilization of heterosis and breeding for clubroot disease resistance in B. napus.
Collapse
|
5
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
6
|
The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proc Natl Acad Sci U S A 2021; 118:2105274118. [PMID: 34433671 DOI: 10.1073/pnas.2105274118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138 We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.
Collapse
|
7
|
Li Q, Xu B, Du Y, Peng A, Ren X, Si J, Song H. Development of Ogura CMS restorers in Brassica oleracea subspecies via direct Rfo B gene transformation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1123-1132. [PMID: 33404672 DOI: 10.1007/s00122-020-03757-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The Ogura CMS RfoB restorer developing via RfoB gene transformation was utilized to produce specific morphological Ogura CMS restorers and clubroot resistance lines in Brassica oleracea subspecies. Brassica oleracea vegetables including cabbage, cauliflower, kohlrabi, Brussels sprouts and Chinese kale are morphologically very different despite being members of the same species. The Ogura cytoplasmic male sterility (CMS) system is the most stable strategy for the hybrid breeding of these species. However, this limits the utilization of some excellent genes due to the lack of fertile restorer genes in the system. Herein, to efficaciously use Ogura CMS, the Ogura CMS RfoB restorer was produced by transforming the modified RfoB restorer gene into the Ogura CMS line 'CMS2016' of B. oleracea var. capitata. This gene was shown to recover fertility of natural Ogura CMS lines in B. oleracea subspecies and create transient Ogura CMS RfoB restorers such as the clubroot resistance Ogura CMS RfoB restorer. Interestingly, clubroot resistant individuals without transgenic elements were screened in the progenies of hybrids between B. oleracea inbred lines and the clubroot resistance Ogura CMS RfoB restorer. In addition, 18 different morphological Ogura CMS restorers were developed to specifically recover fertile of Ogura CMS cultivars in B. oleracea subspecies.
Collapse
Affiliation(s)
- Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bingbing Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yangmei Du
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ao Peng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China.
- Chongqing Key Laboratory of Olericulture, Chongqing, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Mol Genet Genomics 2021; 296:705-717. [PMID: 33772345 PMCID: PMC8144145 DOI: 10.1007/s00438-021-01777-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/04/2022]
Abstract
Cytoplasmic male sterility (CMS) observed in many plants leads defect in the production of functional pollen, while the expression of CMS is suppressed by a fertility restorer gene in the nuclear genome. Ogura CMS of radish is induced by a mitochondrial orf138, and a fertility restorer gene, Rfo, encodes a P-type PPR protein, ORF687, acting at the translational level. But, the exact function of ORF687 is still unclear. We found a Japanese variety showing male sterility even in the presence of Rfo. We examined the pollen fertility, Rfo expression, and orf138 mRNA in progenies of this variety. The progeny with Type H orf138 and Rfo showed male sterility when their orf138 mRNA was unprocessed within the coding region. By contrast, all progeny with Type A orf138 were fertile though orf138 mRNA remained unprocessed in the coding region, demonstrating that ORF687 functions on Type A but not on Type H. In silico analysis suggested a specific binding site of ORF687 in the coding region, not the 5′ untranslated region estimated previously, of Type A. A single nucleotide substitution in the putative binding site diminishes affinity of ORF687 in Type H and is most likely the cause of the ineffectiveness of ORF687. Furthermore, fertility restoration by RNA processing at a novel site in some progeny plants indicated a new and the third fertility restorer gene, Rfs, for orf138. This study clarified that direct ORF687 binding to the coding region of orf138 is essential for fertility restoration by Rfo.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan.
| | - Megumi Jikuya
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Kanako Okushiro
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Ayako Hashimoto
- Research Center of Botany, Kyoto Sangyo University, Kamigamo, Kita , Kyoto, 603-8555, Japan
| | - Asumi Fukunaga
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Mizuki Takenaka
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toru Terachi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| |
Collapse
|
9
|
Li P, Kang L, Wang A, Cui C, Jiang L, Guo S, Ge X, Li Z. Development of a Fertility Restorer for inap CMS ( Isatis indigotica) Brassica napus Through Genetic Introgression of One Alien Addition. FRONTIERS IN PLANT SCIENCE 2019; 10:257. [PMID: 30891056 PMCID: PMC6412144 DOI: 10.3389/fpls.2019.00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 05/22/2023]
Abstract
Novel Brassica napus cytoplasmic male sterility (CMS) with carpelloid stamens (inap CMS) was produced by intertribal somatic hybridization with Isatis indigotica (Chinese woad), but its RF (restorer of fertility) gene(s) existed in one particular woad chromosome that was carried by one fertile monosomic alien addition line (MAAL) of rapeseed. Herein, the selfed progenies of this MAAL were extensively selected and analyzed to screen the rapeseed-type plants (2n = 38) with good male fertility and to produce their doubled haploid (DH) lines by microspore culture. From the investigation of fertility restoration in the F1 hybrids with inap CMS, one DH line (RF 39) was identified to adequately restore male fertility and likely carried one dominant RF gene. Specifically, this restorer produced brown pollen grains, similar to the woad and the MAAL, suggesting that this trait is closely linked with the RF gene(s) and serves as one phenotypic marker for the restorer. This restorer contained 38 chromosomes of rapeseed and no intact chromosomes of woad, but some DNA fragments of woad origin were detected at low frequency. This restorer was much improved for pollen and seed fertility and for low glucosinolate content. The successful breeding of the restorer for inap CMS rendered this new pollination control system feasible for rapeseed hybrid production.
Collapse
Affiliation(s)
- Pengfei Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lei Kang, Zaiyun Li,
| | - Aifan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liangcai Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shizhen Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lei Kang, Zaiyun Li,
| |
Collapse
|
10
|
Carruthers JM, Cook SM, Wright GA, Osborne JL, Clark SJ, Swain JL, Haughton AJ. Oilseed rape ( Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GLOBAL CHANGE BIOLOGY. BIOENERGY 2017; 9:1370-1379. [PMID: 28781612 PMCID: PMC5518758 DOI: 10.1111/gcbb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield-enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse-grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24-h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open-pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse-grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.
Collapse
Affiliation(s)
- Jonathan M. Carruthers
- Rothamsted ResearchWest CommonHarpendenHertfordshireAL5 2JQUK
- Royal Society of BiologyCharles Darwin House, 12 Roger StreetLondonWC1N 2JUUK
| | | | - Geraldine A. Wright
- Centre for Behaviour and EvolutionInstitute of NeuroscienceNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Juliet L. Osborne
- Environment and Sustainability InstituteUniversity of ExeterPenryn CampusPenrynCornwallTR10 9FEUK
| | | | | | | |
Collapse
|
11
|
Qin X, Warguchuk R, Arnal N, Gaborieau L, Mireau H, Brown GG. In vivo functional analysis of a nuclear restorer PPR protein. BMC PLANT BIOLOGY 2014; 14:313. [PMID: 25403785 PMCID: PMC4240901 DOI: 10.1186/s12870-014-0313-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nuclear restorers of cytoplasmic male fertility (CMS) act to suppress the male sterile phenotype by down-regulating the expression of novel CMS-specifying mitochondrial genes. One such restorer gene is Rfo, which restores fertility to the radish Ogura or ogu CMS. Rfo, like most characterized restorers, encodes a pentatricopeptide repeat (PPR) protein, a family of eukaryotic proteins characterized by tandem repeats of a 35 amino acid motif. While over 400 PPR genes are found in characterized plant genomes and the importance of this gene family in organelle gene expression is widely recognized, few detailed in vivo assessments of primary structure-function relationships in this protein family have been conducted. RESULTS In contrast to earlier studies, which identified 16 or 17 PPR domains in the Rfo protein, we now find, using a more recently developed predictive tool, that Rfo has 18 repeat domains with the additional domain N-terminal to the others. Comparison of transcript sequences from pooled rfo/rfo plants with pooled Rfo/Rfo plants of a mapping population led to the identification of a non-restoring rfo allele with a 12 bp deletion in the fourth domain. Introduction into ogu CMS plants of a genetic construct in which this deletion had been introduced into Rfo led to a partial loss in the capacity to produce viable pollen, as assessed by vital staining, pollen germination and the capacity for seed production following pollination of CMS plants. The degree of viable pollen production among different transgenic plants roughly correlated with the copy number of the introduced gene and with the reduction of the levels of the ORF138 CMS-associated protein. All other constructs tested, including one in which only the C-terminal PPR repeat was deleted and another in which this repeat was replaced by the corresponding domain of the related, non-restoring gene, PPR-A, failed to result in any measure of fertility restoration. CONCLUSIONS The identification of the additional PPR domain in Rfo indicates that the protein, apart from its N-terminal mitochondrial targeting presequence, consists almost entirely of PPR repeats. The newly identified rfo allele carries the same 4 amino acid deletion as that found in the neighboring, related, non-restoring PPR gene, PPR-A. Introduction of this four amino acid deletion into a central domain the Rfo protein, however, only partially reduces its restoration capacity, even though this alteration might be expected to alter the spacing between the adjoining repeats. All other tested alterations, generated by deleting specific PPR repeats or exchanging repeats with corresponding domains of PPR-A, led to a complete loss of restorer function. Overall we demonstrate that introduction of targeted alterations of Rfo into ogu CMS plants provides a sensitive in vivo readout for analysis of the relationship between primary structure and biological function in this important family of plant proteins.
Collapse
Affiliation(s)
- Xike Qin
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
- />Current address: Lady Davis Institute for Medical research, 3999 Cote Ste-Catherine Rd., Montreal, QC H3T 1E2 Canada
| | - Richard Warguchuk
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
- />Current address: Deparment of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6 Canada
| | - Nadège Arnal
- />INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- />AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- />Current address: INRA, Centre National de Ressources Génomiques Végétales, Castanet Tolosan, France
| | - Lydiane Gaborieau
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
| | - Hakim Mireau
- />INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- />AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Gregory G Brown
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
| |
Collapse
|
12
|
Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 2014; 19 Pt B:166-71. [PMID: 24769053 DOI: 10.1016/j.mito.2014.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility (CMS) is a common feature encountered in plant species. It is the result of a genomic conflict between the mitochondrial and the nuclear genomes. CMS is caused by mitochondrial encoded factors which can be counteracted by nuclear encoded factors restoring male fertility. Despite extensive work, the molecular mechanism of male sterility still remains unknown. Several studies have suggested the involvement of respiration on the disruption of pollen production through an energy deficiency. By comparing recent works on CMS and respiratory mutants, we suggest that the "ATP hypothesis" might not be as obvious as previously suggested.
Collapse
|
13
|
Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 2014; 19 Pt B:198-205. [PMID: 24732436 DOI: 10.1016/j.mito.2014.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility and its fertility restoration via nuclear genes offer the possibility to understand the role of mitochondria during microsporogenesis. In most cases rearrangements in the mitochondrial DNA involving known mitochondrial genes as well as unknown sequences result in the creation of new chimeric open reading frames, which encode proteins containing transmembrane domains. So far, most of the CMS systems have been characterized via restriction fragment polymorphisms followed by transcript analysis. However, whole mitochondrial genome sequence analyses comparing male sterile and fertile cytoplasm open options for deeper insights into mitochondrial genome rearrangements. We more and more start to unravel how mitochondria are involved in triggering death of the male reproductive organs. Reduced levels of ATP accompanied by increased concentrations of reactive oxygen species, which are produced more under conditions of mitochondrial dysfunction, seem to play a major role in the fate of pollen production. Nuclear genes, so called restorer-of-fertility are able to restore the male fertility. Fertility restoration can occur via pentatricopeptide repeat (PPR) proteins or via different mechanisms involving non-PPR proteins.
Collapse
|
14
|
Wang ZW, Wang C, Gao L, Mei SY, Zhou Y, Xiang CP, Wang T. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2041-2048. [PMID: 23630327 PMCID: PMC3638831 DOI: 10.1093/jxb/ert065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The practice of hybridization has greatly contributed to the increase in crop productivity. A major component that exploits heterosis in crops is the cytoplasmic male sterility (CMS)/nucleus-controlled fertility restoration (Rf) system. Through positional cloning, it is shown that heterozygous alleles (RsRf3-1/RsRf3-2) encoding pentatricopeptide repeat (PPR) proteins are responsible for restoring fertility to cytoplasmic male-sterile radish (Raphanus sativus L.). Furthermore, it was found that heterozygous alleles (RsRf3-1/RsRf3-2) show higher expression and RNA polymerase II occupancy in the CMS cytoplasmic background compared with their homozygous alleles (RsRf3-1/RsRf3-1 or RsRf3-2/RsRf3-2). These data provide new insights into the molecular mechanism of fertility restoration to cytoplasmic male-sterile plants and illustrate a case of overdominance.
Collapse
Affiliation(s)
- Zhi Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chuan Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Shi Yong Mei
- Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chang Ping Xiang
- Key Laboratory of Ministry of Education for Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| |
Collapse
|
15
|
Niemelä T, Seppänen M, Badakshi F, Rokka VM, Heslop-Harrison JSP. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res 2012; 20:353-61. [PMID: 22476396 DOI: 10.1007/s10577-012-9280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
Abstract
In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.
Collapse
Affiliation(s)
- Tarja Niemelä
- Department of Agriculture, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
16
|
Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1285-95. [PMID: 22090439 PMCID: PMC3276091 DOI: 10.1093/jxb/err355] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/02/2011] [Accepted: 10/11/2011] [Indexed: 05/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants, and several studies have established that this maternally inherited defect is often associated with a mitochondrial mutant. Approximately 10 chimeric genes have been identified as being associated with corresponding CMS systems in the family Brassicaceae, but there is little direct evidence that these genes cause male sterility. In this study, a novel chimeric gene (named orf288) was found to be located downstream of the atp6 gene and co-transcribed with this gene in the hau CMS sterile line. Western blotting analysis showed that this predicted open reading frame (ORF) was translated in the mitochondria of male-sterile plants. Furthermore, the growth of Escherichia coli was significantly repressed in the presence of ORF288, which indicated that this protein is toxic to the E. coli host cells. To confirm further the function of orf288 in male sterility, the gene was fused to a mitochondrial-targeting pre-sequence under the control of the Arabidopsis APETALA3 promoter and introduced into Arabidopsis thaliana. Almost 80% of transgenic plants with orf288 failed to develop anthers. It was also found that the independent expression of orf288 caused male sterility in transgenic plants, even without the transit pre-sequence. Furthermore, transient expression of orf288 and green fluorescent protein (GFP) as a fused protein in A. thaliana protoplasts showed that ORF288 was able to anchor to mitochondria even without the external mitochondrial-targeting peptide. These observations provide important evidence that orf288 is responsible for the male sterility of hau CMS in Brassica juncea.
Collapse
|
17
|
Tan Y, Li S, Xie H, Duan S, Wang T, Zhu Y. Genetical and molecular analysis reveals a cooperating relationship between cytoplasmic male sterility- and fertility restoration-related genes in Oryza species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:9-19. [PMID: 20714705 DOI: 10.1007/s00122-010-1418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/17/2010] [Indexed: 05/08/2023]
Abstract
Although the characterization of genes associated with cytoplasmic male sterility (CMS) and fertility restoration (Rf) has been well documented, the evolutionary relationship between nuclear Rf and CMS factors in mitochondria in Oryza species is still less understood. Here, 41 accessions from 7 Oryza species with AA genome were employed for analyzing the evolutionary relationships between the CMS factors and Rf candidates on chromosome 10. The phylogenetic tree based on restriction fragment length polymorphism patterns of CMS-associated mitochondrial genes showed that these 41 Oryza accessions fell into 3 distinct groups. Another phylogenetic tree based on PCR profiles of the nuclear Rf candidates on chromosome 10 was also established, and three groups were distinctively grouped. The accessions in each subgroup/group of the two phylogenetic trees are well parallel to each other. Furthermore, the 41 investigated accessions were test-crossed with Honglian (gametophytic type) and Wild-abortive (sporophytic type) CMS, and 5 groups were classified according to their restoring ability. The accessions in the same subgroup of the two phylogenetic trees shared similar fertility restoring pattern. Therefore, we conclude that the CMS-associated mitotypes are compatible to the Rf candidate-related nucleotypes, CMS and Rf have a parallel evolutionary relation in the Oryza species.
Collapse
Affiliation(s)
- YanPing Tan
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
18
|
Elansary HO, Müller K, Olson MS, Štorchová H. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris. BMC PLANT BIOLOGY 2010; 10:11. [PMID: 20070905 PMCID: PMC2820487 DOI: 10.1186/1471-2229-10-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/13/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. RESULTS We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. CONCLUSIONS Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris.Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.
Collapse
Affiliation(s)
- Hosam O Elansary
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Matthew S Olson
- Department of Biology and Wildlife, University of Alaska at Fairbanks, Fairbanks, AK 99775, USA
- Institute of Arctic Biology, University of Alaska at Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA
| | - Helena Štorchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 00 Prague 6, Lysolaje, Czech Republic
- Institute of Arctic Biology, University of Alaska at Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA
| |
Collapse
|
19
|
Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. THE PLANT CELL 2008; 20:3331-45. [PMID: 19098270 PMCID: PMC2630448 DOI: 10.1105/tpc.107.057208] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 10/31/2008] [Accepted: 12/05/2008] [Indexed: 05/17/2023]
Abstract
Cytoplasmic male sterility is a maternally inherited trait in higher plants that prevents the production of functional pollen. Ogura cytoplasmic male sterility in radish (Raphanus sativus) is regulated by the orf138 mitochondrial locus. Male fertility can be restored when orf138 accumulation is suppressed by the nuclear Rfo locus, which consists of three genes putatively encoding highly similar pentatricopeptide repeat proteins (PPR-A, -B, and -C). We produced transgenic rapeseed (Brassica napus) plants separately expressing PPR-A and PPR-B and demonstrated that both encoded proteins accumulated preferentially in the anthers of young flower buds. Immunodetection of ORF138 showed that, unlike PPR-B, PPR-A had no effect on the synthesis of the sterility protein. Moreover, immunolocalization experiments indicated that complete elimination of ORF138 from the tapetum of anthers correlated with the restoration of fertility. Thus, the primary role of PPR-B in restoring fertility is to inhibit ORF138 synthesis in the tapetum of young anthers. In situ hybridization experiments confirmed, at the cellular level, that PPR-B has no effect on the accumulation of orf138 mRNA. Lastly, immunoprecipitation experiments demonstrated that PPR-B, but not PPR-A, is associated with the orf138 RNA in vivo, linking restoration activity with the ability to directly or indirectly interact with the orf138 RNA. Together, our data support a role for PPR-B in the translational regulation of orf138 mRNA.
Collapse
Affiliation(s)
- M Uyttewaal
- Institut National de la Recherche Agronomique, Station de Génétique et d'Amélioration des Plantes, 78026 Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang S, Terachi T, Yamagishi H. Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male sterile cytoplasm. ANNALS OF BOTANY 2008; 102:483-9. [PMID: 18625698 PMCID: PMC2701772 DOI: 10.1093/aob/mcn116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines. METHODS In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR. KEY RESULTS Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited. CONCLUSIONS These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.
Collapse
|
21
|
Ivanov MK, Dymshits GM. Cytoplasmic male sterility and restoration of pollen fertility in higher plants. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407040023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gillman JD, Bentolila S, Hanson MR. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:217-27. [PMID: 17156410 DOI: 10.1111/j.1365-313x.2006.02953.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A class of nuclear genes termed "restorers of fertility" (Rf) acts to suppress the expression of abnormal mitochondrial genes associated with cytoplasmic male sterility (CMS). In petunia, both the nuclear Rf gene and mitochondrial CMS-associated gene have previously been identified. The CMS-associated gene is an aberrant chimera in which portions of several mitochondrially encoded genes are fused to an unknown reading frame. The dominant Rf allele reduces the CMS-associated protein to nearly undetectable levels and alters the RNA population derived from the CMS locus, but its mechanism of action has not been determined. The petuniaRf gene is a member of the pentatricopeptide repeat gene family (PPR), an unusually large gene family in Arabidopsis (approximately 450 genes) compared with yeast (five genes) and mammalian genomes (six genes). The PPR gene family has been implicated in the control of organelle gene expression. To gain insight into the mode of action of PPR genes, we generated transgenic petunia plants expressing a functional tagged version of Rf. Analysis of the restorer protein revealed that it is part of a soluble mitochondrial inner-membrane-associated, RNase-sensitive high-molecular-weight protein complex. The complex is associated with mRNA derived from the CMS locus.
Collapse
Affiliation(s)
- Jason D Gillman
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
23
|
Meur G, Gaikwad K, Bhat SR, Prakash S, Kirti PB. Homeotic-like modification of stamens to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male sterile Ogura Brassica juncea. J Genet 2006; 85:133-9. [PMID: 17072082 DOI: 10.1007/bf02729019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.
Collapse
Affiliation(s)
- Gargi Meur
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | |
Collapse
|
24
|
Leino M, Thyselius S, Landgren M, Glimelius K. Arabidopsis thaliana chromosome III restores fertility in a cytoplasmic male-sterile Brassica napus line with A. thaliana mitochondrial DNA. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:272-9. [PMID: 15071729 DOI: 10.1007/s00122-004-1644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Accepted: 03/01/2004] [Indexed: 05/10/2023]
Abstract
Somatic Brassica napus (+) Arabidopsis thaliana hybrids with a cytoplasmic male sterility (CMS)-inducing cytoplasm were screened for fertility-restored plants. One line was selected and recurrently backcrossed with the maintainer line, B. napus, resulting in fertile/sterile segregating populations. Restriction fragment length polymorphism mapping showed the co-segregation of A. thaliana chromosome (chr) III markers with the fertility trait. As it was not possible to stabilise the fertility trait via selfings, a dihaploidisation strategy was assessed. Ninety haploid plants were regenerated and analysed with numerous simple sequence length polymorphism (SSLP) markers. Markers covering both arms of A. thaliana chr III were present in two plants, whereas no A. thaliana DNA could be detected in the other plants. Following colchicine-induced chromosome doubling only these two plants with A. thaliana DNA produced fertile offspring. In one of the two lines, however, the A. thaliana-specific DNA markers and fertility were lost in subsequent generations. The other line remained fertile after repeated selfings. Using genomic in situ hybridisation (GISH) we were able to demonstrate that this latter line possessed a disomic addition of the A. thaliana chromosome. The restored line was comparable to the maintainer line with respect to flower morphology, but the petals and stamens were slightly reduced in size. The homeotic conversion of stamens to pistil-like structures, which is typical for the CMS line, was reversed, and stamens with a normal appearance with viable pollen appeared. Flowering time was as in the CMS line-in both lines it was delayed in comparison to the maintainer line. The introgressed chromosome also contributes to several pleiotropic effects, such as reduced leaf crinkling and shorter stems. The ability to restore fertility through the introgression of nuclear genes from the main cytoplasmic donor species indicates that the CMS trait in this system mainly is due to B. napus/ A. thaliana alloplasmic incompatibility and not mitochondrial DNA rearrangements. Further exploitation of the material is discussed.
Collapse
Affiliation(s)
- M Leino
- Department of Plant Biology and Forest Genetics, Swedish University for Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Kleter GA, Peijnenburg AACM. Presence of potential allergy-related linear epitopes in novel proteins from conventional crops and the implication for the safety assessment of these crops with respect to the current testing of genetically modified crops. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:371-80. [PMID: 17166136 DOI: 10.1046/j.1467-7652.2003.00035.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mitochondria of cytoplasmic male sterile crop plants contain novel, chimeric open reading frames. In addition, a number of crops carry endogenous double-stranded ribonucleic acid (dsRNA). In this study, the novel proteins encoded by these genetic components were screened for the presence of potential binding sites (epitopes) of allergy-associated IgE antibodies, as was previously done with transgenic proteins from genetically modified crops. The procedure entails the identification of stretches of at least six contiguous amino acids that are shared by novel proteins and known allergenic proteins. These stretches are further checked for potential linear IgE-binding epitopes. Of the 16 novel protein sequences screened in this study, nine contained stretches of six or seven amino acids that were also present in allergenic proteins. Four cases of similarity are of special interest, given the predicted antigenicity of the identical stretch within the allergenic and novel protein, the IgE-binding by a peptide containing an identical stretch reported in literature, or the multiple incidence of identical stretches of the same allergen within a novel protein. These selected stretches are present in novel proteins derived from oilseed rape and radish (ORF138), rice (dsRNA), and fava bean (dsRNA), and warrant further clinical testing. The frequency of positive outcomes and the sizes of the identical stretches were comparable to those previously found for transgenic proteins in genetically modified crops. It is discussed whether novel proteins from conventional crops should be subject to an assessment of potential allergenicity, a procedure which is currently mandatory for transgenic proteins from genetically modified crops.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT Institute of Food Safety, PO Box 230, NL 6700 AE Wageningen, The Netherlands
| | | |
Collapse
|
28
|
Pathania A, Bhat SR, Dinesh Kumar V, Kirti PB, Prakash S, Chopra VL. Cytoplasmic male sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics of fertility restoration. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:455-461. [PMID: 12968615 DOI: 10.1007/s00122-003-1266-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study was aimed at characterizing cytoplasmic male sterility (CMS) and identifying the fertility restorer gene for CMS (Diplotaxis catholica) Brassica juncea derived through sexual hybridization. The fertility restorer gene was identified by crossing the CMS line with progeny plants derived from somatic hybrids of B. juncea and D. cathoilca. The CMS line is comparable to the nuclear donor B. juncea in all respects except for flower and silique characteristics. In CMS plants, the flowers have smaller nectaries, and anthers are converted into petals or tubular structures. Gynoecium exhibits a crooked style and trilocular ovary. Seed fertility was reduced in the CMS line. Genetic segregation data indicated that a single, dominant, nuclear gene governs fertility restoration. Restored plants showed a high female fertility and lacked gynoecium abnormalities. In fertility-restored plants, petal development was found to be variable; some flowers had the normal number of four petals, while others had zero to three petals. Interestingly, the trilocular character of the ovary was found to co-segregate with CMS and became bilocular upon male-fertility restoration. Thus, this trait appears to be affected by the interaction of nuclear and mitochondrial (mt) genomes. Restriction fragment length polymorphism analysis indicated that mt-genome of D. catholica is highly divergent from that of B. juncea. However, in Northern analysis, out of eight mt genes studied, an altered transcript pattern was recorded for only atpA. In fertility-restored plants, the atpA transcript became shorter, thereby showing its association with CMS.
Collapse
Affiliation(s)
- A Pathania
- National Research Centre on Plant Biotechnology, Indian Agricultural Resreach Institute, New Delhi, India
| | | | | | | | | | | |
Collapse
|
29
|
Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:262-72. [PMID: 12848830 DOI: 10.1046/j.1365-313x.2003.01799.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A single radish nuclear gene, Rfo, restores Ogura (ogu) cytoplasmic male sterility (CMS) in Brassica napus. A map-based cloning approach relying on synteny between radish and Arabidopsis was used to clone Rfo. A radish gene encoding a 687-amino-acid protein with a predicted mitochondrial targeting pre-sequence was found to confer male fertility upon transformation into ogu CMS B. napus. This gene, like the recently described Petunia Rf gene, codes for a pentatricopeptide repeat (PPR)-containing protein with multiple, in this case 16, PPR domains. Two similar genes that do not appear to function as Rfo flank this gene. Comparison of the Rfo region with the syntenic Arabidopsis region indicates that a PPR gene is not present at the Rfo-equivalent site in Arabidopsis, although a smaller and related PPR gene is found about 40 kb from this site. The implications of these findings for the evolution of restorer genes and other PPR encoding genes are discussed.
Collapse
Affiliation(s)
- Gregory G Brown
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leino M, Teixeira R, Landgren M, Glimelius K. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1156-1163. [PMID: 12748764 DOI: 10.1007/s00122-002-1167-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 09/16/2002] [Indexed: 05/24/2023]
Abstract
Numerous Brassica napus (+) Arabidopsis thaliana somatic hybrids were screened for male sterility and aberrant flower phenotypes. Nine hybrids were selected and backcrossed recurrently to B. napus. The resulting lines displayed stable maternal inheritance of flower phenotypes. Nuclear and organellar genomes were characterized molecularly using RFLP analysis. No DNA from A. thaliana was found in the nuclear genome after six back-crosses, whilst the mitochondrial genomes contained rearranged DNA from both A. thaliana and B. napus. Each line tested had a unique RFLP pattern of the mitochondrial DNA (mtDNA) that remained unchanged between the BC(3) and BC(6) generation. The plastid genomes consisted of B. napus DNA. Five lines of the BC(5) generation were subjected to more comprehensive investigations of growth, morphology and fertility. On the basis of these investigations, the five CMS lines could be assigned to two groups, one represented by three lines displaying reduced vegetative development, complete male sterility, and homeotic conversions of stamens into feminized structures. The second group, represented by the other two lines, were not completely male-sterile but still displayed severely affected flower morphologies. These two lines did not display any reduction in vegetative development. For both groups only stamens and petals suffered from the morphological and functional aberrations, while the sepals and pistils displayed normal morphology. All plants were fully female-fertile. Different rearrangements of the mitochondrial genome disturbed nuclear-mitochondrial interactions and led to various types of aberrant growth and flower development. The existence of numerous CMS lines with different mitochondrial patterns involving a species with a sequenced genome offers new opportunities to investigate the genetic regulation of CMS and its associated developmental perturbations.
Collapse
Affiliation(s)
- M Leino
- Department of Plant Biology, Box 7080, Swedish University for Agricultural Sciences, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
31
|
Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:407-15. [PMID: 12753581 DOI: 10.1046/j.1365-313x.2003.01735.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytoplasmic male sterility (CMS) in plants is a maternally inherited inability to produce functional pollen, and is often associated with mitochondrial DNA abnormalities. Specific nuclear loci that suppress CMS, termed as restorers of fertility (Rf), have been identified. Previously, we identified an Rf for the CMS Kosena radish and used genetic analysis to identify the locus and create a contig covering the critical interval. To identify the Rf gene, we introduced each of the lambda and cosmid clones into the CMS Brassica napus and scored for fertility restoration. Fertility restoration was observed when one of the lambda clones was introduced into the CMS B. napus. Furthermore, introduction of a 4.7-kb BamHI/HpaI fragment of the lambda clone is enough to restore male fertility. A cDNA strand isolated from a positive fragment contained a predicted protein (ORF687) of 687 amino acids comprising 16 repeats of the 35-amino acid pentatricopeptide repeat (PPR) motif. Kosena CMS radish plants were found to express an allele of this gene possessing four substituted amino acids in the second and third repeats of the PPR suggesting that the domains formed by these repeats in ORF687 are essential for fertility restoration. Protein levels of the Kosena CMS-associated mitochondrial protein ORF125 were considerably reduced in plants in which fertility was restored, although mRNA expression was normal. Regarding the possible role for PPR-containing proteins in the regulation of the mitochondrial gene, we propose that ORF687 functions either directly or indirectly to lower the levels of ORF125, resulting in the restoration of fertility in CMS plants.
Collapse
Affiliation(s)
- Nobuya Koizuka
- Plantech Research Institute, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:169-181. [PMID: 11851918 DOI: 10.1046/j.0960-7412.2001.01203.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Homeotic transformation of stamens into pistil-like structures (pistillody) has been observed in a cytoplasmic substitution (alloplasmic) line of wheat (Triticum aestivum L.) cv. Norin 26, which has the cytoplasm of a wild relative species, Aegilops crassa L. On the other hand, an alloplasmic line of wheat cv. Chinese Spring (CS) with Ae. crassa cytoplasm has normal flowers. This is due to the presence in the CS nucleus of a fertility-restoring gene, Rfd1. Deletion mapping analysis revealed that Rfd1 is located on the middle part of the long arm of chromosome 7B. To investigate the function of the Rfd1 gene by a loss-of-function strategy, we produced alloplasmic lines of CS ditelosomic 7BS [(cr)-CSdt7BS] and CS monotelodisomic 7BS [(cr)-CSmd7BS] with the Ae. crassa cytoplasm, and characterized their phenotypes. The line (cr)-CSdt7BS without Rfd1 exhibited pistillody in all florets, and also female sterility. Scanning electron microscopy of the young spikes revealed that the pistillody was induced at an early stage of stamen development. The pistillate stamens often developed incomplete ovule-like structures with integuments instead of tapetum and pollen grains. It is possible that MADS box genes are associated with the induction of pistillody, because the expression of wheat APETALA3 homologue (WAP3) was reduced in the young spikes of (cr)-CSdt7BS. In addition, a histological study indicated that the female sterility in (cr)-CSdt7BS is due to the abnormality of the ovule, which fails to form an inner epidermis and integuments in the chalaza region. The line (cr)-CSmd7BS, hemizygous for Rfd1, showed partial pistillody (51%) and restored female fertility up to 72%. These results suggest that the induction of both pistillody and ovule deficiency caused by the Ae. crassa cytoplasm is inhibited by the Rfd1 gene in a dose-dependent manner.
Collapse
Affiliation(s)
- Koji Murai
- Department of Bioscience, Fukui Prefectural University, Matsuoka-cho, Fukui 910-1195, Japan.
| | | | | | | |
Collapse
|