1
|
Madhu BP, Singh KP, Saminathan M, Singh R, Tiwari AK, Manjunatha V, Harish C, Manjunathareddy GB. Correlation of inducible nitric oxide synthase (iNOS) inhibition with TNF-α, caspase-1, FasL and TLR-3 in pathogenesis of rabies in mouse model. Virus Genes 2015; 52:61-70. [PMID: 26690069 DOI: 10.1007/s11262-015-1265-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of inflammatory cytokines such as interleukin-1α/β (IL-1α/β), IL-6, IL-10, tumour necrosis factor-alpha (TNF-α), interferons, nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in pathogenesis of rabies is being actively pursued. Presently, levels of certain immune molecules in pathogenesis of rabies in mice have been investigated. CVS strain of rabies infection resulted in early increase in iNOS, TNF-α, caspase-1, Fas ligand (FasL) and toll-like receptor-3 (TLR-3) mRNA levels in brain, and nitric oxide levels in serum. The severity of clinical signs and microscopic lesions largely correlated with NO levels. Aminoguanidine (AG; iNOS inhibitor) decreased NO production with delay in development of clinical signs and increase in survival time. Prolonged survival time correlated with reduced viral load evident by real-time PCR, reduced fluorescent signals of rabies antigen in brain and reduced immunohistochemistry signals in neuronal cytoplasm. These parameters suggested that nitric oxide did influence the rabies virus replication. Inhibition of iNOS by AG administration led to decreased expression of TNF-α, caspase-1, FasL and TLR-3 mRNA levels suggesting that increase in NO levels in rabies virus infection possibly contributed to development of disease through inflammation, apoptosis and immune-evasive mechanisms.
Collapse
Affiliation(s)
- B P Madhu
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K P Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis (CADRAD), ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - M Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A K Tiwari
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - V Manjunatha
- Wild Animal Disease Diagnostic Laboratory, Institute of Animal Health and Veterinary Biologicals, Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka, India
| | - C Harish
- Department of Pre-Clinical Research, Anthem Biosciences Pvt Ltd, Bommasandra, Bengaluru, Karnataka, India
| | - G B Manjunathareddy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Aravindh Babu RP, Manoharan S, Ramadass P, Chandran NDJ. Evaluation of rt-PCR assay for routine laboratory diagnosis of rabies in post mortem brain samples from different species of animals. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:392-6. [PMID: 24293832 DOI: 10.1007/s13337-012-0109-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Rabies in domestic and wild animals continues to be a major public health threat in India. Rapid and accurate diagnosis of rabies in animals is therefore of utmost importance as the individuals who were in contact with the rabid animals are at a greater risk. A significant amount of diagnostic tissue samples submitted to our laboratory are often autolysed and the WHO recommended direct fluorescent antibody test (FAT) for rabies diagnosis cannot be used in such samples. In this pilot study we have evaluated three different diagnostic primer sets for rapid sensitive and specific detection of rabies genome from the brain samples of different species of animals. We have validated a sensitive RT-PCR assay using brain tissue samples from different species of animals such as cat, cattle, dog, mouse and human, for routine diagnosis of rabies. Our results show the potential of this assay as a confirmatory test when the FAT results are unreliable and also as an alternative diagnostic test in circumstances when the diagnostic samples are unsuitable for use in FAT. Furthermore the nucleotide sequence of nucleoprotein gene amplified using this assay can also be used for the molecular epidemiological study of the rabies viruses in India.
Collapse
Affiliation(s)
- R P Aravindh Babu
- Rabies Unit, Department of Animal Biotechnology, Madras Veterinary College, Chennai, 600007 India ; Pirbright Laboratory, Institute for Animal Health, Ash Road, Pirbright, GU240NF UK
| | | | | | | |
Collapse
|
3
|
Wacharapluesadee S, Hemachudha T. Ante- and post-mortem diagnosis of rabies using nucleic acid-amplification tests. Expert Rev Mol Diagn 2010; 10:207-18. [PMID: 20214539 DOI: 10.1586/erm.09.85] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sensitivity, specificity and short turn-around time nucleic acid-amplification tests (NATs) have been steadily improving. NATs have been employed in the diagnosis of rabies to distinct different strains, as well as to identify new lyssaviruses. NATs have advantages over traditional methods, such as the direct fluorescence antibody test. They can be applied to fluid samples and brain tissue that is substantially decomposed. NATs can be used as an alternative method for confirmation or exclusion of the diagnosis in a suspected rabies patient. Real-time PCR methods are more favored than conventional reverse-transcription PCR methods by several laboratories. Second-round PCR, either nested or heminested, has been used for ante-mortem diagnosis to detect low levels of RNA. This review the details obstacles in making a diagnosis, how to properly utilize NATs (sample preparation, nucleic amplification techniques, amplification targets and primer design); and interprets the results obtained in recent studies.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- WHO Collaborating Centre for Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand, 10330.
| | | |
Collapse
|
4
|
Fooks AR, Johnson N, Freuling CM, Wakeley PR, Banyard AC, McElhinney LM, Marston DA, Dastjerdi A, Wright E, Weiss RA, Müller T. Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century. PLoS Negl Trop Dis 2009; 3:e530. [PMID: 19787037 PMCID: PMC2745658 DOI: 10.1371/journal.pntd.0000530] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diagnosis of rabies is routinely based on clinical and epidemiological information, especially when exposures are reported in rabies-endemic countries. Diagnostic tests using conventional assays that appear to be negative, even when undertaken late in the disease and despite the clinical diagnosis, have a tendency, at times, to be unreliable. These tests are rarely optimal and entirely dependent on the nature and quality of the sample supplied. In the course of the past three decades, the application of molecular biology has aided in the development of tests that result in a more rapid detection of rabies virus. These tests enable viral strain identification from clinical specimens. Currently, there are a number of molecular tests that can be used to complement conventional tests in rabies diagnosis. Indeed the challenges in the 21st century for the development of rabies diagnostics are not of a technical nature; these tests are available now. The challenges in the 21st century for diagnostic test developers are two-fold: firstly, to achieve internationally accepted validation of a test that will then lead to its acceptance by organisations globally. Secondly, the areas of the world where such tests are needed are mainly in developing regions where financial and logistical barriers prevent their implementation. Although developing countries with a poor healthcare infrastructure recognise that molecular-based diagnostic assays will be unaffordable for routine use, the cost/benefit ratio should still be measured. Adoption of rapid and affordable rabies diagnostic tests for use in developing countries highlights the importance of sharing and transferring technology through laboratory twinning between the developed and the developing countries. Importantly for developing countries, the benefit of molecular methods as tools is the capability for a differential diagnosis of human diseases that present with similar clinical symptoms. Antemortem testing for human rabies is now possible using molecular techniques. These barriers are not insurmountable and it is our expectation that if such tests are accepted and implemented where they are most needed, they will provide substantial improvements for rabies diagnosis and surveillance. The advent of molecular biology and new technological initiatives that combine advances in biology with other disciplines will support the development of techniques capable of high throughput testing with a low turnaround time for rabies diagnosis.
Collapse
Affiliation(s)
- Anthony R. Fooks
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Nicholas Johnson
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Conrad M. Freuling
- Friedrich-Loeffler-Institute, Federal Research Institute of Animal Health, Wusterhausen, Germany
| | - Philip R. Wakeley
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Ashley C. Banyard
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Lorraine M. McElhinney
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Denise A. Marston
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Akbar Dastjerdi
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-related Viruses, New Haw, Addlestone, United Kingdom
| | - Edward Wright
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Robin A. Weiss
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Thomas Müller
- Friedrich-Loeffler-Institute, Federal Research Institute of Animal Health, Wusterhausen, Germany
| |
Collapse
|
5
|
Saxena S, Dahiya SS, Sonwane AA, Patel CL, Saini M, Rai A, Gupta PK. A sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge. Vaccine 2009; 26:6592-601. [PMID: 18848857 DOI: 10.1016/j.vaccine.2008.09.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 09/14/2008] [Accepted: 09/15/2008] [Indexed: 11/17/2022]
Abstract
A sindbis virus replicon-based DNA vaccine encoding rabies virus glycoprotein (G) was developed by subcloning rabies G gene into a sindbis virus replicon-based vaccine vector (pAlpha). The self-amplification of RNA transcripts and translation efficiency of rabies G was analyzed in pAlpha-Rab-G-transfected mammalian cells using RT-PCR, SDS-PAGE and Western blot analysis. The transfected cells also showed induction of apoptosis which is an important event in the enhancement of immune responses. Further, immune responses induced with replicon-based rabies DNA vaccine (pAlpha-Rab-G) was compared with conventional rabies DNA vaccine and commercial cell culture vaccine (Rabipur) in intramuscularly injected mice. The mice immunized with replicon-based rabies DNA vaccine induced humoral and cell mediated immune responses better than conventional rabies DNA vaccine however, comparable to Rabipur vaccine. On challenge with rabies virus CVS strain, replicon-based rabies DNA vaccine conferred complete protection similar to Rabipur. These results demonstrate that replicon-based rabies DNA vaccine is effective in inducing both humoral and cellular immune responses and can be considered as effective vaccine against rabies.
Collapse
Affiliation(s)
- Sonal Saxena
- Division of Animal Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | | | | | | | | | | | | |
Collapse
|