1
|
Zhang L, Li W, Chen X, Cao D, You S, Shi F, Luo Z, Li H, Zeng X, Song Y, Li N, Akimoto Y, Rui G, Chen Y, Wu Z, Xu R. Morusin inhibits breast cancer-induced osteolysis by decreasing phosphatidylinositol 3-kinase (PI3K)-mTOR signalling. Chem Biol Interact 2024; 394:110968. [PMID: 38522564 DOI: 10.1016/j.cbi.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.
Collapse
Affiliation(s)
- Long Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Weibin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; The Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, The Cancer Centre and the Department of Breast-Thyroid Surgery, Xiang' an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohui Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dongmin Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, Guangdong, 528437, China
| | - Siyuan You
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fan Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengqiong Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hongyu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangchen Zeng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yabin Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Na Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | | | - Gang Rui
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuoxing Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ren Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; The Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, The Cancer Centre and the Department of Breast-Thyroid Surgery, Xiang' an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Cheng M, Fan X, He M, Dai X, Liu X, Hong J, Zhang L, Liao L. Identification of an endoplasmic reticulum stress-related prognostic risk model with excellent prognostic and clinical value in oral squamous cell carcinoma. Aging (Albany NY) 2023; 15:10010-10030. [PMID: 37647077 PMCID: PMC10599730 DOI: 10.18632/aging.204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Recently, endoplasmic reticulum stress related gene (ERS) markers have performed very well in predicting the prognosis of tumor patients. METHODS The differentially expressed genes in Oral squamous cell carcinoma (OSCC) were obtained from TCGA and GTEx database. Three prognosis-related and differentially expressed ERSs were screened out by Least Absolute Selection and Shrinkage Operator (Lasso) regression to construct a prognostic risk model. Receiver Operating Characteristic Curve (ROC), riskplots and survival curves were used to verify the model's accuracy in predicting prognosis. Multi-omics analysis of immune infiltration, gene mutation, and stem cell characteristics were performed to explore the possible mechanism of OSCC. Finally, we discussed the model's clinical application value from the perspective of drug sensitivity. RESULTS Three genes used in the model (IBSP, RDM1, RBP4) were identified as prognostic risk factors. Bioinformatics analysis, tissue and cell experiments have fully verified the abnormal expression of these three genes in OSCC. Multiple validation methods and internal and external datasets confirmed the model's excellent performance in predicting and discriminating prognosis. Cox regression analysis identified risk score as an independent predictor of prognosis. Multi-omics analysis found strong correlations between risk scores and immune cells, cell stemness index, and tumor mutational burden (TMB). It was also observed that the risk score was closely related to the half maximal inhibitory concentration of docetaxel, gefitinib and erlotinib. The excellent performance of the nomogram has been verified by various means. CONCLUSION A prognostic model with high clinical application value was constructed. Immune cells, cellular stemness, and TMB may be involved in the progression of OSCC.
Collapse
Affiliation(s)
- Mingyang Cheng
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
- Clinical Medical Research Center Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'An, Jiangxi, China
| | - Xin Fan
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Mu He
- The Stomatology College of Nanchang University, Nanchang, Jiangxi, China
| | - Xianglin Dai
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Xiaoli Liu
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Jinming Hong
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Laiyu Zhang
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Lan Liao
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
- Clinical Medical Research Center Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'An, Jiangxi, China
| |
Collapse
|
4
|
Chiou AE, Liu C, Moreno-Jiménez I, Tang T, Wagermaier W, Dean MN, Fischbach C, Fratzl P. Breast cancer-secreted factors perturb murine bone growth in regions prone to metastasis. SCIENCE ADVANCES 2021; 7:eabf2283. [PMID: 33731354 PMCID: PMC7968847 DOI: 10.1126/sciadv.abf2283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
Breast cancer frequently metastasizes to bone, causing osteolytic lesions. However, how factors secreted by primary tumors affect the bone microenvironment before the osteolytic phase of metastatic tumor growth remains unclear. Understanding these changes is critical as they may regulate metastatic dissemination and progression. To mimic premetastatic bone adaptation, immunocompromised mice were injected with MDA-MB-231-conditioned medium [tumor-conditioned media (TCM)]. Subsequently, the bones of these mice were subjected to multiscale, correlative analysis including RNA sequencing, histology, micro-computed tomography, x-ray scattering analysis, and Raman imaging. In contrast to overt metastasis causing osteolysis, TCM treatment induced new bone formation that was characterized by increased mineral apposition rate relative to control bones, altered bone quality with less matrix and more carbonate substitution, and the deposition of disoriented mineral near the growth plate. Our study suggests that breast cancer-secreted factors may promote perturbed bone growth before metastasis, which could affect initial seeding of tumor cells.
Collapse
Affiliation(s)
- Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Liu
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Inés Moreno-Jiménez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Tengteng Tang
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
5
|
El-Fattah AAA, Sadik NAH, Shaker OG, Mohamed Kamal A, Shahin NN. Serum Long Non-Coding RNAs PVT1, HOTAIR, and NEAT1 as Potential Biomarkers in Egyptian Women with Breast Cancer. Biomolecules 2021; 11:301. [PMID: 33670447 PMCID: PMC7922136 DOI: 10.3390/biom11020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs play an important role in tumor growth, angiogenesis, and metastasis in several types of cancer. However, the clinical significance of using lncRNAs as biomarkers for breast cancer diagnosis and prognosis is still poorly investigated. In this study, we analyzed the serum expression levels of lncRNAs PVT1, HOTAIR, NEAT1, and MALAT1, and their associated proteins, PAI-1, and OPN, in breast cancer patients compared to fibroadenoma patients and healthy subjects. Using quantitative real-time PCR (qRT-PCR), we compared the serum expression levels of the four circulating lncRNAs in patients with breast cancer (n = 50), fibroadenoma (n = 25), and healthy controls (n = 25). The serum levels of PAI-1 and OPN were measured using ELISA. Receiveroperating-characteristic (ROC) analysis and multivariate logistic regression were used to evaluate the diagnostic value of the selected parameters. The serum levels of HOTAIR, PAI-1, and OPN were significantly higher in breast cancer patients compared to controls and fibroadenoma patients. The serum level of PVT1 was significantly higher in breast cancer patients than in the controls, while that of NEAT1 was significantly lower in breast cancer patients compared to controls and fibroadenoma patients. Both ROC and multivariate logistic regression analyses revealed that PAI-1 has the greatest power in discriminating breast cancer from the control, whereas HOTAIR, PAI-1, and OPN have the greatest power in discriminating breast cancer from fibroadenoma patients. In conclusion, our data suggest that the serum levels of PVT1, HOTAIR, NEAT1, PAI-1, and OPN could serve as promising diagnostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Amal Ahmed Abd El-Fattah
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo 11562, Egypt; (A.A.A.E.-F.); (N.A.H.S.); (N.N.S.)
| | - Nermin Abdel Hamid Sadik
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo 11562, Egypt; (A.A.A.E.-F.); (N.A.H.S.); (N.N.S.)
| | - Olfat Gamil Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Amal Mohamed Kamal
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo 11562, Egypt; (A.A.A.E.-F.); (N.A.H.S.); (N.N.S.)
| | - Nancy Nabil Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo 11562, Egypt; (A.A.A.E.-F.); (N.A.H.S.); (N.N.S.)
| |
Collapse
|
6
|
Whyne CM, Ferguson D, Clement A, Rangrez M, Hardisty M. Biomechanical Properties of Metastatically Involved Osteolytic Bone. Curr Osteoporos Rep 2020; 18:705-715. [PMID: 33074529 DOI: 10.1007/s11914-020-00633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Skeletal metastasis involves the uncoupling of physiologic bone remodeling resulting in abnormal bone turnover and radical changes in bony architecture, density, and quality. Bone strength assessment and fracture risk prediction are critical in clinical treatment decision-making. This review focuses on bone tissue and structural mechanisms altered by osteolytic metastasis and the resulting changes to its material and mechanical behavior. RECENT FINDINGS Both organic and mineral phases of bone tissue are altered by osteolytic metastatic disease, with diminished bone quality evident at multiple length-scales. The mechanical performance of bone with osteolytic lesions is influenced by a combination of tissue-level and structural changes. This review considers the effects of osteolytic metastasis on bone biomechanics demonstrating its negative impact at tissue and structural levels. Future studies need to assess the cumulative impact of cancer treatments on metastatically involved bone quality, and its utility in directing multimodal treatment planning.
Collapse
Affiliation(s)
- Cari M Whyne
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
- Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Dallis Ferguson
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Allison Clement
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Mohammedayaz Rangrez
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Elshafae SM, Dirksen WP, Alasonyalilar-Demirer A, Breitbach J, Yuan S, Kantake N, Supsavhad W, Hassan BB, Attia Z, Rosol TJ. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis. Prostate 2020; 80:698-714. [PMID: 32348616 PMCID: PMC7291846 DOI: 10.1002/pros.23983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteoblastic bone metastasis represents the most common complication in men with prostate cancer (PCa). During progression and bone metastasis, PCa cells acquire properties similar to bone cells in a phenomenon called osteomimicry, which promotes their ability to metastasize, proliferate, and survive in the bone microenvironment. The mechanism of osteomimicry resulting in osteoblastic bone metastasis is unclear. METHODS We developed and characterized a novel canine prostatic cancer cell line (LuMa) that will be useful to investigate the relationship between osteoblastic bone metastasis and osteomimicry in PCa. The LuMa cell line was established from a primary prostate carcinoma of a 13-year old mixed breed castrated male dog. Cell proliferation and gene expression of LuMa were measured and compared to three other canine prostatic cancer cell lines (Probasco, Ace-1, and Leo) in vitro. The effect of LuMa cells on calvaria and murine preosteoblastic (MC3T3-E1) cells was measured by quantitative reverse-transcription polymerase chain reaction and alkaline phosphatase assay. LuMa cells were transduced with luciferase for monitoring in vivo tumor growth and metastasis using different inoculation routes (subcutaneous, intratibial [IT], and intracardiac [IC]). Xenograft tumors and metastases were evaluated using radiography and histopathology. RESULTS After left ventricular injection, LuMa cells metastasized to bone, brain, and adrenal glands. IT injections induced tumors with intramedullary new bone formation. LuMa cells had the highest messenger RNA levels of osteomimicry genes (RUNX2, RANKL, and Osteopontin [OPN]), CD44, E-cadherin, and MYOF compared to Ace-1, Probasco, and Leo cells. LuMa cells induced growth in calvaria defects and modulated gene expression in MC3T3-E1 cells. CONCLUSIONS LuMa is a novel canine PCa cell line with osteomimicry and stemness properties. LuMa cells induced osteoblastic bone formation in vitro and in vivo. LuMa PCa cells will serve as an excellent model for studying the mechanisms of osteomimicry and osteoblastic bone and brain metastasis in prostate cancer.
Collapse
Affiliation(s)
- Said M. Elshafae
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary medicine, Benha University, Benha, Egypt
- Dept. of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wessel P. Dirksen
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Aylin Alasonyalilar-Demirer
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Turkey
| | - Justin Breitbach
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shiyu Yuan
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Noriko Kantake
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Wachiraphan Supsavhad
- Dept. of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Bardes B. Hassan
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zayed Attia
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
| | - Thomas J. Rosol
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Correspondence to: Dr. Thomas Rosol, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 225 Irvine Hall, Athens, OH 45701, USA. , Phone: 740.593.2405
| |
Collapse
|
8
|
A Potential Role of RUNX2- RUNT Domain in Modulating the Expression of Genes Involved in Bone Metastases: An In Vitro Study with Melanoma Cells. Cells 2020; 9:cells9030751. [PMID: 32204402 PMCID: PMC7140624 DOI: 10.3390/cells9030751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023] Open
Abstract
Ectopic expression of RUNX2 has been reported in several tumors. In melanoma cells, the RUNT domain of RUNX2 increases cell proliferation and migration. Due to the strong link between RUNX2 and skeletal development, we hypothesized that the RUNT domain may be involved in the modulation of mechanisms associated with melanoma bone metastasis. Therefore, we evaluated the expression of metastatic targets in wild type (WT) and RUNT KO melanoma cells by array and real-time PCR analyses. Western blot, ELISA, immunofluorescence, migration and invasion ability assays were also performed. Our findings showed that the expression levels of bone sialoprotein (BSP) and osteopontin (SPP1) genes, which are involved in malignancy-induced hypercalcemia, were reduced in RUNT KO cells. In addition, released PTHrP levels were lower in RUNT KO cells than in WT cells. The RUNT domain also contributes to increased osteotropism and bone invasion in melanoma cells. Importantly, we found that the ERK/p-ERK and AKT/p-AKT pathways are involved in RUNT-promoted bone metastases. On the basis of our findings, we concluded that the RUNX2 RUNT domain is involved in the mechanisms promoting bone metastasis of melanoma cells via complex interactions between multiple players involved in bone remodeling.
Collapse
|
9
|
Graham N, Qian BZ. Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. Int J Mol Sci 2018; 19:E1121. [PMID: 29642534 PMCID: PMC5979535 DOI: 10.3390/ijms19041121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the most advanced stage of many cancers and indicates a poor prognosis for patients due to resistance to anti-tumor therapies. The establishment of metastasis within the bone is a multistep process. To ensure survival within the bone marrow, tumor cells must initially colonize a niche in which they can enter dormancy. Subsequently, reactivation permits the proliferation and growth of the tumor cells, giving rise to a macro-metastasis displayed clinically as a bone metastatic lesion. Here, we review the evidences that suggest mesenchymal stromal cells play an important role in each of these steps throughout the development of bone metastasis. Similarities between the molecular mechanisms implicated in these processes and those involved in the homeostasis of the bone indicate that the metastatic cells may exploit the homeostatic processes to their own advantage. Identifying the molecular interactions between the mesenchymal stromal cells and tumor cells that promote tumor development may offer insight into potential therapeutic targets that could be utilized to treat bone metastasis.
Collapse
Affiliation(s)
- Nicola Graham
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Bin-Zhi Qian
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
10
|
Taipaleenmäki H, Farina NH, van Wijnen AJ, Stein JL, Hesse E, Stein GS, Lian JB. Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget 2018; 7:79032-79046. [PMID: 27738322 PMCID: PMC5346696 DOI: 10.18632/oncotarget.12593] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023] Open
Abstract
Wnt signaling is implicated in bone formation and activated in breast cancer cells promoting primary and metastatic tumor growth. A compelling question is whether osteogenic miRNAs that increase Wnt activity for bone formation are aberrantly expressed in breast tumor cells to support metastatic bone disease. Here we report that miR-218-5p is highly expressed in bone metastases from breast cancer patients, but is not detected in normal mammary epithelial cells. Furthermore, inhibition of miR-218-5p impaired the growth of bone metastatic MDA-MB-231 cells in the bone microenvironment in vivo. These findings indicate a positive role for miR-218-5p in bone metastasis. Bioinformatic and biochemical analyses revealed a positive correlation between aberrant miR-218-5p expression and activation of Wnt signaling in breast cancer cells. Mechanistically, miR-218-5p targets the Wnt inhibitors Sclerostin (SOST) and sFRP-2, which highly enhances Wnt signaling. In contrast, delivery of antimiR-218-5p decreased Wnt activity and the expression of metastasis-related genes, including bone sialoprotein (BSP/IBSP), osteopontin (OPN/SPP1) and CXCR-4, implicating a Wnt/miR-218-5p regulatory network in bone metastatic breast cancer. Furthermore, miR-218-5p also mediates the Wnt-dependent up-regulation of PTHrP, a key cytokine promoting cancer-induced osteolysis. Antagonizing miR-218-5p reduced the expression of PTHrP and Rankl, inhibited osteoclast differentiation in vitro and in vivo, and prevented the development of osteolytic lesions in a preclinical metastasis model. We conclude that pathological elevation of miR-218-5p in breast cancer cells activates Wnt signaling to enhance metastatic properties of breast cancer cells and cancer-induced osteolytic disease, suggesting that miR-218-5p could be an attractive therapeutic target for preventing disease progression.
Collapse
Affiliation(s)
- Hanna Taipaleenmäki
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicholas H Farina
- Department of Biochemistry & Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Andre J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Janet L Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry & Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry & Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jane B Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry & Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
11
|
Ridge SM, Bhattacharyya D, Dervan E, Naicker SD, Burke AJ, Murphy JM, O'leary K, Greene J, Ryan AE, Sullivan FJ, Glynn SA. Secreted factors from metastatic prostate cancer cells stimulate mesenchymal stem cell transition to a pro-tumourigenic 'activated' state that enhances prostate cancer cell migration. Int J Cancer 2018; 142:2056-2067. [PMID: 29266277 DOI: 10.1002/ijc.31226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/30/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent cells that are capable of differentiating into osteocytes, chondrocytes and adipocytes. Recently, MSCs have been found to home to the tumour site and engraft in the tumour stroma. However, it is not yet known whether they have a tumour promoting or suppressive function. We investigated the interaction between prostate cancer cell lines 22Rv1, DU145 and PC3, and bone marrow-derived MSCs. MSCs were 'educated' for extended periods in prostate cancer cell conditioned media and PC3-educated MSCs were found to be the most responsive with a secretory profile rich in pro-inflammatory cytokines. PC3-educated MSCs secreted increased osteopontin (OPN), interleukin-8 (IL-8) and fibroblast growth factor-2 (FGF-2) and decreased soluble fms-like tyrosine kinase-1 (sFlt-1) compared to untreated MSCs. PC3-educated MSCs showed a reduced migration and proliferation capacity that was dependent on exposure to PC3-conditioned medium. Vimentin and α-smooth muscle actin (αSMA) expression was decreased in PC3-educated MSCs compared to untreated MSCs. PC3 and DU145 education of healthy donor and prostate cancer patient-derived MSCs led to a reduced proportion of FAP+ αSMA+ cells contrary to characteristics commonly associated with cancer associated fibroblasts (CAFs). The migration of PC3 cells was increased toward both PC3-educated and DU145-educated MSCs compared to untreated MSCs, while DU145 migration was only enhanced toward patient-derived MSCs. In summary, MSCs developed an altered phenotype in response to prostate cancer conditioned medium which resulted in increased secretion of pro-inflammatory cytokines, modified functional activity and the chemoattraction of prostate cancer cells.
Collapse
Affiliation(s)
- Sarah M Ridge
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Dibyangana Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Serika D Naicker
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Amy J Burke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - J M Murphy
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Karen O'leary
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - John Greene
- Department of Histopathology, School of Medicine, Trinity College Dublin, Trinity College Dublin, Dublin, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Wang S, Noda K, Yang Y, Shen Z, Chen Z, Ogata Y. Calcium hydroxide regulates transcription of the bone sialoprotein gene via a calcium-sensing receptor in osteoblast-like ROS 17/2.8 cells. Eur J Oral Sci 2017; 126:13-23. [DOI: 10.1111/eos.12392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shuang Wang
- Stomatology College of Tianjn Medical University; Tianjn China
| | - Keisuke Noda
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Yuanyuan Yang
- Stomatology College of Tianjn Medical University; Tianjn China
| | - Zhengyan Shen
- Stomatology College of Tianjn Medical University; Tianjn China
| | - Zhen Chen
- Stomatology College of Tianjn Medical University; Tianjn China
| | - Yorimasa Ogata
- Department of Periodontology; Nihon University School of Dentistry at Matsudo; Chiba Japan
- Research Institute of Oral Science; Nihon University School of Dentistry at Matsudo; Chiba Japan
| |
Collapse
|
13
|
Kittur H, Tay A, Hua A, Yu M, Di Carlo D. Probing Cell Adhesion Profiles with a Microscale Adhesive Choice Assay. Biophys J 2017; 113:1858-1867. [PMID: 29045879 PMCID: PMC5647542 DOI: 10.1016/j.bpj.2017.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022] Open
Abstract
In this work, we introduce, to our knowledge, a new set of adhesion-based biomarkers for characterizing mammalian cells. Mammalian cell adhesion to the extracellular matrix influences numerous physiological processes. Current in vitro methods to probe adhesion focus on adhesive force to a single surface, which can investigate only a subcomponent of the adhesive, motility, and polarization cues responsible for adhesion in the 3D tissue environment. Here, we demonstrate a method to quantify the transhesive properties of cells that relies on the microscale juxtaposition of two extracellular matrix-coated surfaces. By multiplexing this approach, we investigate the unique transhesive profiles for breast cancer cells that are adapted to colonize different metastatic sites. We find that malignant breast cancer cells readily transfer to new collagen I surfaces, and away from basement membrane proteins. Integrins and actin polymerization largely regulate this transfer. This tool can be readily adopted in cell biology and cancer research to uncover, to our knowledge, novel drivers of adhesion (or de-adhesion) and sort cell populations based on complex phenotypes with physiological relevance.
Collapse
Affiliation(s)
- Harsha Kittur
- University of California Los Angeles, Los Angeles, California
| | - Andy Tay
- University of California Los Angeles, Los Angeles, California
| | - Avery Hua
- University of California Los Angeles, Los Angeles, California
| | - Min Yu
- University of Southern California, Los Angeles, California
| | - Dino Di Carlo
- University of California Los Angeles, Los Angeles, California; California NanoSystems Institute, Los Angeles, California; Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
14
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance. Endocr Relat Cancer 2017; 24:R349-R366. [PMID: 28733469 PMCID: PMC5574206 DOI: 10.1530/erc-17-0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Jeyna Resaul
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Rachel Hargest
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
15
|
Schulze S, Wehrum D, Dieter P, Hempel U. A supplement-free osteoclast-osteoblast co-culture for pre-clinical application. J Cell Physiol 2017; 233:4391-4400. [PMID: 28667751 DOI: 10.1002/jcp.26076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
There is increasing demand for efficient and physiological in vitro cell culture systems suitable for testing new pharmaceutical drugs or for evaluating materials for tissue regeneration. In particular, co-cultures of two or more tissue-relevant cell types have the advantage to study the response of cells on diverse parameters in a more natural environment with respect to physiological complexity. We developed a direct bone cell co-culture system using human peripheral blood monocytes (hPBMC) and human bone marrow stromal cells (hBMSC) as osteoclast/osteoblast precursor cells, respectively, strictly avoiding external supplements for the induction of differentiation. The sophisticated direct hPBMC/hBMSC co-culture was characterized focusing on osteoclast function and was compared with two indirect approaches. Only in the direct co-culture, hPBMC were triggered by hBMSC into osteoclastogenesis and became active resorbing osteoclasts. Bisphosphonates and sulfated glycosaminoglycans were used to examine the suitability of the co-culture system for evaluating the influence of certain effectors on bone healing and bone regeneration and the contribution of each cell type thereby. The results show that the investigated substances had more pronounced effects on both osteoblasts and osteoclasts in the co-culture system than in respective monocultures.
Collapse
Affiliation(s)
- Sabine Schulze
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Diana Wehrum
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Peter Dieter
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ute Hempel
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Dang D, Prasad H, Rao R. Secretory pathway Ca 2+ -ATPases promote in vitro microcalcifications in breast cancer cells. Mol Carcinog 2017; 56:2474-2485. [PMID: 28618103 DOI: 10.1002/mc.22695] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Calcification of the breast is often an outward manifestation of underlying molecular changes that drive carcinogenesis. Up to 50% of all non-palpable breast tumors and 90% of ductal carcinoma in situ present with radiographically dense mineralization in mammographic scans. However, surprisingly little is known about the molecular pathways that lead to microcalcifications in the breast. Here, we report on a rapid and quantitative in vitro assay to monitor microcalcifications in breast cancer cell lines, including MCF7, MDA-MB-231, and Hs578T. We show that the Secretory Pathway Ca2+ -ATPases SPCA1 and SPCA2 are strongly induced under osteogenic conditions that elicit microcalcifications. SPCA gene expression is significantly elevated in breast cancer subtypes that are associated with microcalcifications. Ectopic expression of SPCA genes drives microcalcifications and is dependent on pumping activity. Conversely, knockdown of SPCA expression significantly attenuates formation of microcalcifications. We propose that high levels of SPCA pumps may initiate mineralization in the secretory pathway by elevating luminal Ca2+ . Our new findings offer mechanistic insight and functional implications on a widely observed, yet poorly understood radiographic signature of breast cancer.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Burke M, Atkins A, Kiss A, Akens M, Yee A, Whyne C. The impact of metastasis on the mineral phase of vertebral bone tissue. J Mech Behav Biomed Mater 2017; 69:75-84. [DOI: 10.1016/j.jmbbm.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022]
|
18
|
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16:31. [PMID: 28148268 PMCID: PMC5286812 DOI: 10.1186/s12943-017-0597-8] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/19/2017] [Indexed: 02/08/2023] Open
Abstract
Tumour progression is dependent on the interaction between tumour cells and cells of the surrounding microenvironment. The tumour is a dynamic milieu consisting of various cell types such as endothelial cells, fibroblasts, cells of the immune system and mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells that are known to reside in various areas such as the bone marrow, fat and dental pulp. MSCs have been found to migrate towards inflammatory sites and studies have shown that they also migrate towards and incorporate into the tumour. The key question is how they interact there. MSCs may interact with tumour cells through paracrine signalling. On the other hand, MSCs have the capacity to differentiate to various cell types such as osteocytes, chondrocytes and adipocytes and it is possible that MSCs differentiate at the site of the tumour. More recently it has been shown that cross-talk between tumour cells and MSCs has been shown to increase metastatic potential and promote epithelial-to-mesenchymal transition. This review will focus on the role of MSCs in tumour development at various stages of progression from growth of the primary tumour to the establishment of distant metastasis.
Collapse
Affiliation(s)
- Sarah M Ridge
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland. .,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland.
| |
Collapse
|
19
|
Owen S, Zabkiewicz C, Ye L, Sanders AJ, Gong C, Jiang WG. Key Factors in Breast Cancer Dissemination and Establishment at the Bone: Past, Present and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:197-216. [PMID: 29282685 DOI: 10.1007/978-981-10-6020-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone metastases associated with breast cancer remain a clinical challenge due to their associated morbidity, limited therapeutic intervention and lack of prognostic markers. With a continually evolving understanding of bone biology and its dynamic microenvironment, many potential new targets have been proposed. In this chapter, we discuss the roles of well-established bone markers and how their targeting, in addition to tumour-targeted therapies, might help in the prevention and treatment of bone metastases. There are a vast number of bone markers, of which one of the best-known families is the bone morphogenetic proteins (BMPs). This chapter focuses on their role in breast cancer-associated bone metastases, associated signalling pathways and the possibilities for potential therapeutic intervention. In addition, this chapter provides an update on the role receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play on breast cancer development and their subsequent influence during the homing and establishment of breast cancer-associated bone metastases. Beyond the well-established bone molecules, this chapter also explores the role of other potential factors such as activated leukocyte cell adhesion molecule (ALCAM) and its potential impact on breast cancer cells' affinity for the bone environment, which implies that ALCAM could be a promising therapeutic target.
Collapse
Affiliation(s)
- Sioned Owen
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Catherine Zabkiewicz
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Lin Ye
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Chang Gong
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wen G Jiang
- Cardiff University School of Medicine, CCMRC, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
20
|
Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence. Breast 2016; 30:156-171. [DOI: 10.1016/j.breast.2016.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/05/2023] Open
|
21
|
Gomis RR, Gawrzak S. Tumor cell dormancy. Mol Oncol 2016; 11:62-78. [PMID: 28017284 PMCID: PMC5423221 DOI: 10.1016/j.molonc.2016.09.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
Metastasis is the primary cause of death in cancer patients and current treatments fail to provide durable responses. Efforts to treat metastatic disease are hindered by the fact that metastatic cells often remain dormant for prolonged intervals of years, or even decades. Tumor dormancy reflects the capability of disseminated tumor cells (DTCs), or micrometastases, to evade treatment and remain at low numbers after primary tumor resection. Unfortunately, dormant cells will eventually produce overt metastasis. Innovations are needed to understand metastatic dormancy and improve cancer detection and treatment. Currently, few models exist that faithfully recapitulate metastatic dormancy and metastasis to clinically relevant tissues, such as the bone. Herein, we discuss recent advances describing genetic cell‐autonomous and systemic or local changes in the microenvironment that have been shown to endow DTCs with properties to survive and eventually colonize distant organs.
Collapse
Affiliation(s)
- Roger R Gomis
- Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
| | - Sylwia Gawrzak
- Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Matrix Metallopeptidase 14 Plays an Important Role in Regulating Tumorigenic Gene Expression and Invasion Ability of HeLa Cells. Int J Gynecol Cancer 2016; 26:600-6. [DOI: 10.1097/igc.0000000000000652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Hou X, Wu X, Huang P, Zhan J, Zhou T, Ma Y, Qin T, Luo R, Feng Y, Xu Y, Chen L, Zhang L. Osteopontin is a useful predictor of bone metastasis and survival in patients with locally advanced nasopharyngeal carcinoma. Int J Cancer 2015; 137:1672-8. [PMID: 25824984 DOI: 10.1002/ijc.29540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/23/2015] [Indexed: 02/02/2023]
Abstract
Bone is the most common metastatic site in nasopharyngeal carcinoma (NPC). Osteopontin (OPN) and bone sialoprotein (BSP) are demonstrated to be involved in multiple steps of distant metastasis and correlate with bone metastasis (BM) in cancers. We aim to explore the impacts of OPN and BSP on the prognosis of the patients with locally advanced NPC. A tissue microarray including 162 locally advanced NPC specimens was generated for immunohistochemical evaluation. All of the patients received curative treatment. Twenty-two patients developed BM during follow-up. The OPN expression level was higher in patients with BM than in those without BM (p = 0.005), whereas no significant difference of the BSP expression level was noted (p = 0.634). Univariate analysis demonstrated that a higher level of OPN expression associated with a poorer 8-year metastasis-free survival (MFS) rate (p < 0.001), 8-year bone metastasis-free survival (BMFS) rate (93.6 vs. 87.5 vs. 64.5% for immunoreactivity score 1, 2 and 3, respectively; p = 0.001) and median overall survival (OS) time (p < 0.001). Multivariate Cox analysis confirmed that high level of OPN expression was independent factor associated with decreased BMFS (p = 0.02), MFS (p < 0.001) and OS (p < 0.001). Our findings indicate that OPN is a prognostic biomarker for BM and survival in patients with locally advanced NPC, and therefore it is useful in identifying the patients with an increased risk of cancer progression and BM to guide tailored therapy.
Collapse
Affiliation(s)
- Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen City, Guangdong Province, People's Republic of China
| | - Peiyu Huang
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Rongzhen Luo
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yanfen Feng
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ying Xu
- Institute of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| |
Collapse
|
24
|
Zhou L, Ogata Y. Transcriptional regulation of the human bone sialoprotein gene by fibroblast growth factor 2. J Oral Sci 2014; 55:63-70. [PMID: 23485603 DOI: 10.2334/josnusd.55.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Fibroblast growth factor 2 (FGF2), a member of the FGF family, positively regulates bone formation and osteoblast differentiation. Bone sialoprotein (BSP) is highly expressed during early bone formation and may play a role in primary mineralization of bone. In the present study, FGF2 (10 ng/mL) was found to increase the levels of Runx2 and BSP mRNA at 3 and 12 h in human osteoblast-like Saos2 cells. Transient transfection assays were performed using chimeric constructs of the human BSP gene promoter ligated with a luciferase reporter gene. FGF2 (10 ng/mL, 12 h) induced the luciferase activities of the -84LUC and -927LUC constructs in Saos2 cells. The results of gel shift assays showed that FGF2 (10 ng/mL) increased the binding of nuclear protein to the FGF2 response element (FRE) and the activator protein 1 (AP1) binding site. Antibodies against Dlx5, Msx2, Runx2 and Smad1 blocked FRE-protein complex formation, and antibodies against CREB1, c-Jun and Fra2 interrupted AP1-protein complex formation. These results indicate that FGF2 increases BSP transcription by targeting the FRE and AP1 elements in the proximal promoter of the human BSP gene. Moreover, the transcription factors Dlx5, Msx2, Runx2, Smad1, CREB1, c-Jun and Fra2 could be key regulators of the effects of FGF2 on human BSP transcription.
Collapse
Affiliation(s)
- Liming Zhou
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | | |
Collapse
|
25
|
Kruger TE, Miller AH, Godwin AK, Wang J. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol 2014; 89:330-41. [PMID: 24071501 PMCID: PMC3946954 DOI: 10.1016/j.critrevonc.2013.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.
Collapse
Affiliation(s)
- Thomas E Kruger
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew H Miller
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Taubenberger AV, Quent VM, Thibaudeau L, Clements JA, Hutmacher DW. Delineating breast cancer cell interactions with engineered bone microenvironments. J Bone Miner Res 2013; 28:1399-411. [PMID: 23362043 DOI: 10.1002/jbmr.1875] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022]
Abstract
The mechanisms leading to colonization of metastatic breast cancer cells (BCa) in the skeleton are still not fully understood. Here, we demonstrate that mineralized extracellular matrices secreted by primary human osteoblasts (hOBM) modulate cellular processes associated with BCa colonization of bone. A panel of four BCa cell lines of different bone-metastatic potential (T47D, SUM1315, MDA-MB-231, and the bone-seeking subline MDA-MB-231BO) was cultured on hOBM. After 3 days, the metastatic BCa cells had undergone morphological changes on hOBM and were aligned along the hOBM's collagen type I fibrils that were decorated with bone-specific proteins. In contrast, nonmetastatic BCa cells showed a random orientation on hOBM. Atomic force microscopy-based single-cell force spectroscopy revealed that the metastatic cell lines adhered more strongly to hOBM compared with nonmetastatic cells. Function-blocking experiments indicated that β1 -integrins mediated cell adhesion to hOBM. In addition, metastatic BCa cells migrated directionally and invaded hOBM, which was accompanied by enhanced MMP-2 and -9 secretion. Furthermore, we observed gene expression changes associated with osteomimickry in BCa cultured on hOBM. As such, osteopontin mRNA levels were significantly increased in SUM1315 and MDA-MB-231BO cells in a β1 -integrin-dependent manner after growing for 3 days on hOBM compared with tissue culture plastic. In conclusion, our results show that extracellular matrices derived from human osteoblasts represent a powerful experimental platform to dissect mechanisms underlying critical steps in the development of bone metastases.
Collapse
Affiliation(s)
- Anna V Taubenberger
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | | | | | | | | |
Collapse
|
27
|
Proteins involved in regulating bone invasion in skull base meningiomas. Acta Neurochir (Wien) 2013; 155:421-7. [PMID: 23238945 PMCID: PMC3569595 DOI: 10.1007/s00701-012-1577-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Background Bone invasive skull base meningiomas are a subset of meningiomas that present a unique clinical challenge due to brain and neural structure involvement and limitations in complete surgical resection, resulting in higher recurrence and need for repeat surgery. To date, the pathogenesis of meningioma bone invasion has not been investigated. We investigated immunoexpression of proteins implicated in bone invasion in other tumor types to establish their involvement in meningioma bone invasion. Methods Retrospective review of our database identified bone invasive meningiomas operated on at our institution over the past 20 years. Using high-throughput tissue microarray (TMA), we established the expression profile of osteopontin (OPN), matrix metalloproteinase-2 (MMP2), and integrin beta-1 (ITGB1). Differential expression in tumor cell and vasculature was evaluated and comparisons were made between meningioma anatomical locations. Results MMP2, OPN, and ITGB1 immunoreactivity was cytoplasmic in tumor and/or endothelial cells. Noninvasive transbasal meningiomas exhibited higher vascular endothelial cell MMP2 immunoexpression compared to invasive meningiomas. We found higher expression levels of OPN and ITGB1 in bone invasive transbasal compared to noninvasive meningiomas. Strong vascular ITGB1 expression extending from the endothelium through the media and into the adventitia was found in a subset of meningiomas. Conclusions We have demonstrated that key proteins are differentially expressed in bone invasive meningiomas and that the anatomical location of bone invasion is a key determinant of expression pattern of MMP1, OPN, and ITGB1. This data provides initial insights into the pathophysiology of bone invasion in meningiomas and identifies factors that can be pursued as potential therapeutic targets.
Collapse
|
28
|
Protamine stimulates bone sialoprotein gene expression. Gene 2013; 516:228-37. [DOI: 10.1016/j.gene.2012.12.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/02/2012] [Indexed: 01/19/2023]
|
29
|
Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JAR, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 2012; 287:42084-92. [PMID: 23060446 DOI: 10.1074/jbc.m112.377515] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activating a positive Wnt signaling loop. In a feed forward mechanism, miR-218 stimulates the Wnt pathway by down-regulating three Wnt signaling inhibitors during the process of osteogenesis: Sclerostin (SOST), Dickkopf2 (DKK2), and secreted frizzled-related protein2 (SFRP2). In turn, miR-218 expression is up-regulated in response to stimulated Wnt signaling and functionally drives Wnt-related transcription and osteoblast differentiation, thereby creating a positive feedback loop. Furthermore, in metastatic breast cancer cells but not in normal mammary epithelial cells, miR-218 enhances Wnt activity and abnormal expression of osteoblastic genes (osteomimicry) that contribute to homing and growth of cells metastatic to bone. Thus, miR-218/Wnt signaling circuit amplifies both the osteoblast phenotype and osteomimicry-related tumor activity.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang Q, Ouyang X. Biochemical-markers for the diagnosis of bone metastasis: A clinical review. Cancer Epidemiol 2012; 36:94-8. [PMID: 21474411 DOI: 10.1016/j.canep.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Qian Huang
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | | |
Collapse
|
31
|
Wang S, Sasaki Y, Ogata Y. Calcium hydroxide regulates bone sialoprotein gene transcription in human osteoblast-like Saos2 cells. J Oral Sci 2011; 53:77-86. [PMID: 21467818 DOI: 10.2334/josnusd.53.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. Calcium hydroxide (Ca(OH)(2)) is a basic salt that has been widely used for a variety of applications in dentistry, due to its antimicrobial effects and its capability of inducing hard tissue formation. However, details of the mechanism involved in the mineralization induced by Ca(OH)(2) are still unclear. In the present study, Ca(OH)(2) (0.4 mM) was found to increase the levels of BSP and Runx2 mRNA at 3 h in human osteoblast-like Saos2 cells. Transient transfection assays were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of Saos2 cells with Ca(OH)(2) (0.4 mM) increased the luciferase activities of the constructs between -60LUC and -927LUC at 12 h. Gel shift analysis showed that Ca(OH)(2) (0.4 mM) increased the binding of nuclear protein to CRE1, CRE2 and FRE. Antibodies against CREB1, c-Fos, c-Jun, JunD, Fra2 and P300 disrupted the formation of the CRE1- and CRE2-protein complexes, and antibodies against Dlx5, Msx2, Runx2 and Smad1 disrupted the formation of the FRE-protein complex. These findings demonstrate that Ca(OH)(2) stimulates BSP transcription by targeting the CRE1, CRE2 and FRE elements in the human BSP gene promoter.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Periodontology, Nihon University School of Dentistry, Chiba, China
| | | | | |
Collapse
|
32
|
Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF, Zha XM, Du Q, Ni XJ, Wang J, Miao SY, Wang S. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 2011; 132:471-86. [DOI: 10.1007/s10549-011-1496-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 03/30/2011] [Indexed: 12/01/2022]
|
33
|
Langley RR, Fidler IJ. The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 2011; 128:2527-35. [PMID: 21365651 DOI: 10.1002/ijc.26031] [Citation(s) in RCA: 632] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/01/2011] [Indexed: 12/14/2022]
Abstract
The fact that certain tumors exhibit a predilection for metastasis to specific organs has been recognized for well over a century now. An extensive body of clinical data and experimental research has confirmed Stephen Paget's original "seed and soil" hypothesis that proposed the organ-preference patterns of tumor metastasis are the product of favorable interactions between metastatic tumor cells (the "seed") and their organ microenvironment (the "soil"). Indeed, many of the first-line therapeutic regimens, currently in use for the treatment of human cancer are designed to target cancer cells (such as chemotherapy) and also to modulate the tumor microenvironment (such as antiangiogenic therapy). While some types of tumors are capable of forming metastases in virtually every organ in the body, the most frequent target organs of metastasis are bone, brain, liver and the lung. In this review, we discuss how tumor-stromal interactions influence metastasis in each of these organs.
Collapse
Affiliation(s)
- Robert R Langley
- Department of Cancer Biology, Cancer Metastasis Research Center, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
34
|
Wang S, Sasaki Y, Zhou L, Matsumura H, Araki S, Mezawa M, Takai H, Chen Z, Ogata Y. Transcriptional regulation of bone sialoprotein gene by interleukin-11. Gene 2011; 476:46-55. [PMID: 21276840 DOI: 10.1016/j.gene.2011.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/30/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Interleukin-11 (IL-11) is a stromal cell-derived cytokine that belongs to the interleukin-6 family of cytokines. IL-11 has many biological activities and has roles in hematopoiesis, immune responses, the nervous system and bone metabolism. Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. IL-11 (20 ng/ml) increased BSP mRNA and protein levels at 12h in osteoblast-like ROS 17/2.8 cells. In a transient transfection assay, IL-11 (20 ng/ml) increased luciferase activity of the construct (-116 to +60) in ROS 17/2.8 cells and rat bone marrow stromal cells. Introduction of 2 bp mutations to the luciferase constructs showed that the effects of IL-11 were mediated by a cAMP response element (CRE), a fibroblast growth factor 2 response element (FRE) and a homeodomain protein-binding site (HOX). Luciferase activities induced by IL-11 were blocked by protein kinase A inhibitor, tyrosine kinase inhibitor and ERK1/2 inhibitor. Gel shift analyses showed that IL-11 (20 ng/ml) increased nuclear protein binding to CRE, FRE and HOX. CREB1, phospho-CREB1, c-Fos, c-Jun, JunD and Fra2 antibodies disrupted the formation of CRE-protein complexes. Dlx5, Msx2, Runx2 and Smad1 antibodies disrupted FRE- and HOX-protein complex formations. These studies demonstrate that IL-11 stimulates BSP transcription by targeting CRE, FRE and HOX sites in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, JunD, Fra2, Dlx5, Msx2, Runx2 and Smadl transcription factors appear to be key regulators of IL-11 effects on BSP transcription.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anborgh PH, Mutrie JC, Tuck AB, Chambers AF. Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med 2010; 14:2037-44. [PMID: 20597997 PMCID: PMC3822994 DOI: 10.1111/j.1582-4934.2010.01115.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a secreted protein present in bodily fluids and tissues. It is subject to multiple post-translational modifications, including phosphorylation, glycosylation, proteolytic cleavage and crosslinking by transglutamination. Binding of OPN to integrin and CD44 receptors regulates signalling cascades that affect processes such as adhesion, migration, invasion, chemotaxis and cell survival. A variety of cells and tissues express OPN, including bone, vasculature, kidney, inflammatory cells and numerous secretory epithelia. Normal physiological roles include regulation of immune functions, vascular remodelling, wound repair and developmental processes. OPN also is expressed in many cancers, and elevated levels in patients’ tumour tissue and blood are associated with poor prognosis. Tumour growth is regulated by interactions between tumour cells and their tissue microenvironment. Within a tumour mass, OPN can be expressed by both tumour cells and cellular components of the tumour microenvironment, and both tumour and normal cells may have receptors able to bind to OPN. OPN can also be found as a component of the extracellular matrix. The functional roles of OPN in a tumour are thus complex, with OPN secreted by both tumour cells and cells in the tumour microenvironment, both of which can in turn respond to OPN. Much remains to be learned about the cross-talk between normal and tumour cells within a tumour, and the role of multiple forms of OPN in these interactions. Understanding OPN-mediated interactions within a tumour will be important for the development of therapeutic strategies to target OPN.
Collapse
Affiliation(s)
- Pieter H Anborgh
- London Regional Cancer Program, London, Ontario, Canada Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Nakayama Y, Yang L, Mezawa M, Araki S, Li Z, Wang Z, Sasaki Y, Takai H, Nakao S, Fukae M, Ogata Y. Effects of porcine 25 kDa amelogenin and its proteolytic derivatives on bone sialoprotein expression. J Periodontal Res 2010; 45:602-11. [PMID: 20546115 DOI: 10.1111/j.1600-0765.2010.01272.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Amelogenins are hydrophobic proteins that are the major component of developing enamel. Enamel matrix derivative has been used for periodontal regeneration. Bone sialoprotein is an early phenotypic marker of osteoblast differentiation. In this study, we examined the ability of porcine amelogenins to regulate bone sialoprotein transcription. MATERIAL AND METHODS To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene by amelogenins, we conducted northern hybridization, transient transfection analyses and gel mobility shift assays using the osteoblast-like ROS 17/2.8 cells. RESULTS Amelogenins (100 ng/mL) up-regulated bone sialoprotein mRNA at 3 h, with maximal mRNA expression occurring at 12 h (25 and 20 kDa) and 6 h (13 and 6 kDa). Amelogenins (100 ng/mL, 12 h) increased luciferase activities in pLUC3 (nucleotides -116 to +60), and 6 kDa amelogenin up-regulated pLUC4 (nucleotides -425 to +60) activity. The tyrosine kinase inhibitor inhibited amelogenin-induced luciferase activities, whereas the protein kinase A inhibitor abolished 25 kDa amelogenin-induced bone sialoprotein transcription. The effects of amelogenins were abrogated by 2-bp mutations in the fibroblast growth factor 2 response element (FRE). Gel-shift assays with radiolabeled FRE, homeodomain-protein binding site (HOX) and transforming growth factor-beta1 activation element (TAE) double-strand oligonucleotides revealed increased binding of nuclear proteins from amelogenin-stimulated ROS 17/2.8 cells at 3 h (25 and 13 kDa) and 6 h (20 and 6 kDa). CONCLUSION These results demonstrate that porcine 25 kDa amelogenin and its proteolytic derivatives stimulate bone sialoprotein transcription by targeting FRE, HOX and TAE in the bone sialoprotein gene promoter, and that full-length amelogenin and amelogenin cleavage products are able to regulate bone sialoprotein transcription via different signaling pathways.
Collapse
Affiliation(s)
- Y Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shevde LA, Das S, Clark DW, Samant RS. Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med 2010; 10:71-81. [PMID: 20205680 DOI: 10.2174/156652410791065381] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 05/11/2008] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a matricellular protein that is produced by multiple tissues in our body and is most abundant in bone. It is also produced by cancer cells and plays a determinative role in the growth, progression and metastasis of cancer. Clinically, OPN has been reported to be upregulated in tumor cells per se; this is also reflected by increased levels of OPN in the circulation. Thus, increased OPN levels the plasma are an effect of tumor growth and progression. Functionally, high OPN levels are determinative of higher incidence of bone metastases in mouse models and are clinically correlated with metastatic bone disease and bone resorption in advanced breast cancer patients. Several research efforts have been made to therapeutically target and inhibit the activities of OPN. In this article we have reviewed OPN in its role as an effector of critical steps in tumor progression and metastasis, with a particular emphasis on its role in facilitating bone metastasis of breast cancer. We have also addressed the role of the host-derived OPN in influencing the malignant behavior of the tumor cells.
Collapse
Affiliation(s)
- L A Shevde
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | | | | | | |
Collapse
|
38
|
Modolo F, Biz MT, Martins MT, Machado de Sousa SO, de Araújo NS. Expression of extracellular matrix proteins in adenomatoid odontogenic tumor. J Oral Pathol Med 2010; 39:230-5. [DOI: 10.1111/j.1600-0714.2009.00846.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Goldstein RH, Weinberg RA, Rosenblatt M. Of mice and (wo)men: mouse models of breast cancer metastasis to bone. J Bone Miner Res 2010; 25:431-6. [PMID: 20200984 DOI: 10.1002/jbmr.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert H Goldstein
- Program in Genetics, Tufts University Sackler School of Biomedical Sciences, Boston, MA, USA
| | | | | |
Collapse
|
40
|
Zhang L, Hou X, Lu S, Rao H, Hou J, Luo R, Huang H, Zhao H, Jian H, Chen Z, Liao M, Wang X. Predictive significance of bone sialoprotein and osteopontin for bone metastases in resected Chinese non-small-cell lung cancer patients: a large cohort retrospective study. Lung Cancer 2010; 67:114-9. [PMID: 19376608 DOI: 10.1016/j.lungcan.2009.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/16/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bone is one of the most common sites of metastasis in patients with non-small-cell lung cancer (NSCLC). Over-expression of bone sialoprotein (BSP) and osteopontin (OPN) in tumour samples has shown prognostic significance in bone metastasis (BM) of breast and prostate cancer, respectively. However, their importance in BM of NSCLC has not been verified. Therefore, we planned a large cohort retrospective study to investigate the relationship between the expression of these two biomarkers (BSP and OPN) and BM in surgically resected NSCLC patients. METHODS 180 completely resected NSCLC patients were included in this study. 40 patients subsequently developed BM. Paraffin-embedded primary tumour tissues of patients were supplied to produce a tissue microarray, and immunohistochemistry method was used for evaluation of the expression of BSP and OPN. Different expressions of these two biomarkers among BM group and non-BM group were estimated by chi(2) test. BM-free survival was analyzed by Kaplan-Meier method. The prognostic impact of clinicopathologic variables and biomarker expression was evaluated by Cox proportional hazards model. RESULTS BSP expression was associated with BM (p=0.007), whereas OPN expression did not reach statistical significance (p=0.245). Univariate analysis showed that expression of BSP (p=0.010) and N staging (p<0.005) was associated with BM-free survival. Multivariate analyses showed BSP expression (HR=3.322, p=0.003), N staging (HR=1.879, p=0.001), and T staging (HR=1.618, p=0.024) were independent prognostic factors for BM. CONCLUSIONS BSP protein expression in the primary resected NSCLC is strongly associated with BM and could be used to identify high-risk patients. Correlation of OPN protein expression and BM needs further investigation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Oncology, Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Macrì A, Versaci A, Lupo G, Trimarchi G, Tomasello C, Loddo S, Sfuncia G, Caminiti R, Teti D, Famulari C. Role of osteopontin in breast cancer patients. TUMORI JOURNAL 2009; 95:48-52. [PMID: 19366056 DOI: 10.1177/030089160909500109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2023]
Abstract
AIM AND BACKGROUND In breast cancer, as in almost all neoplastic diseases, the prognosis is strictly related to the invasive capacity, local and distant, that characterizes the growth of all tumors. Since the mechanisms that regulate replication of the neoplastic cells, with consequent capacity to metastasize, are not completely known, identification of new markers represents the gold standard of research in the stratification of patients with such a pathology. Osteopontin, a specific phosphoglycoprotein isolated from extracellular bone matrix and actively involved in mechanisms of bone reabsorption, appears to play a key role in osteoclastogenesis at the level of the skeleton in some pathologic situations. It has been found that patients with metastatic bone lesions from breast or prostate cancer present, with respect to subjects without repetitive bone lesions, elevated serum levels of the protein, indicating that osteopontin could play an important role in the development and progression of the neoplastic disease at the bone level. METHODS AND STUDY DESIGN The authors studied 26 patients with breast cancer, evaluating as a marker also serum osteopontin levels. RESULTS AND CONCLUSIONS The results, although obtained on a small number of patients, showed that osteopontin evaluation in breast cancer patients can be a particularly interesting method of research in staging of the disease as well as in the prognosis, thereby attributing a role of a biotumoral marker also in the follow-up of the therapy.
Collapse
Affiliation(s)
- Antonio Macrì
- Emergency Surgery Unit, Department of Human Pathology, University of Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jain A, Fisher LW, Fedarko NS. Bone sialoprotein binding to matrix metalloproteinase-2 alters enzyme inhibition kinetics. Biochemistry 2008; 47:5986-95. [PMID: 18465841 DOI: 10.1021/bi800133n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone sialoprotein (BSP) is a secreted glycophosphoprotein normally restricted in expression to skeletal tissue that is also induced by multiple neoplasms in vivo. Previous work has shown that BSP can bind to matrix metalloproteinase-2 (MMP-2). Because of MMP-2 activity in promoting tumor progression, potential therapeutic inhibitors were developed, but clinical trials have been disappointing. The effect of BSP on MMP-2 modulation by inhibitors was determined with purified components and in cell culture. Enzyme inhibition kinetics were studied using a low-molecular weight freely diffusable substrate and purified MMP-2, BSP, and natural (tissue inhibitor of matrix metalloproteinase-2) and synthetic (ilomastat and oleoyl- N-hydroxylamide) inhibitors. We determined parameters of enzyme kinetics by varying substrate concentrations at different fixed inhibitor concentrations added to MMP-2 alone, MMP-2 and BSP, or preformed MMP-2-BSP complexes and solving a general linear mixed inhibition rate equation with a global curve fitting program. Two in vitro angiogenesis model systems employing human umbilical vein endothelial cells (HUVECs) were used to follow BSP modulation of MMP-2 inhibition and tubule formation. The presence of BSP increased the competitive K I values between 15- and 47-fold for natural and synthetic inhibitors. The extent of tubule formation by HUVECs cocultured with dermal fibroblasts was reduced in the presence of inhibitors, while the addition of BSP restored vessel formation. A second HUVEC culture system demonstrated that tubule formation by cells expressing BSP could be inhibited by an activity blocking antibody against MMP-2. BSP modulation of MMP-2 activity and inhibition may define its biological role in promoting tumor progression.
Collapse
Affiliation(s)
- Alka Jain
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
43
|
Aresta A, Calvano CD, Palmisano F, Zambonin CG, Monaco A, Tommasi S, Pilato B, Paradiso A. Impact of sample preparation in peptide/protein profiling in human serum by MALDI-TOF mass spectrometry. J Pharm Biomed Anal 2008; 46:157-64. [DOI: 10.1016/j.jpba.2007.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/26/2022]
|
44
|
Amir LR, Li G, Schoenmaker T, Everts V, Bronckers ALJJ. Effect of thrombin peptide 508 (TP508) on bone healing during distraction osteogenesis in rabbit tibia. Cell Tissue Res 2007; 330:35-44. [PMID: 17636332 PMCID: PMC2039796 DOI: 10.1007/s00441-007-0448-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 05/22/2007] [Indexed: 11/25/2022]
Abstract
Thrombin-related peptide 508 (TP508) accelerates bone regeneration during distraction osteogenesis (DO). We have examined the effect of TP508 on bone regeneration during DO by immunolocalization of Runx2 protein, a marker of osteoblast differentiation, and of osteopontin (OPN) and bone sialoprotein (BSP), two late markers of the osteoblast lineage. Distraction was performed in tibiae of rabbits over a period of 6 days. TP508 (30 or 300 μg) or vehicle was injected into the distraction gap at the beginning and end of the distraction period. Two weeks after active distraction, tissue samples were harvested and processed for immunohistochemical analysis. We also tested the in vitro effect of TP508 on Runx2 mRNA expression in osteoblast-like (MC3T3-E1) cells by polymerase chain reaction analysis. Runx2 and OPN protein were observed in preosteoblasts, osteoblasts, osteocytes of newly formed bone, blood vessel cells and many fibroblast-like cells of the soft connective tissue. Immunostaining for BSP was more restricted to osteoblasts and osteocytes. Significantly more Runx2- and OPN-expressing cells were seen in the group treated with 300 μg TP508 than in the control group injected with saline or with 30 μg TP508. However, TP508 failed to increase Runx2 mRNA levels significantly in MC3T3-E1 cells after 2–3 days of exposure. Our data suggest that TP508 enhances bone regeneration during DO by increasing the proportion of cells of the osteoblastic lineage. Clinically, TP508 may shorten the healing time during DO; this might be of benefit when bone regeneration is slow.
Collapse
Affiliation(s)
- Lisa R. Amir
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Van der Boechorststr 7, 1081BT Amsterdam, The Netherlands
| | - Gang Li
- Musculoskeletal Education and Research Unit, School of Biomedical Sciences, Musgrave Park Hospital, Queen’s University Belfast, Belfast, UK
| | - Ton Schoenmaker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Van der Boechorststr 7, 1081BT Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Van der Boechorststr 7, 1081BT Amsterdam, The Netherlands
| | - Antonius L. J. J. Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Van der Boechorststr 7, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
45
|
Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 2007; 25:589-600. [PMID: 17165130 DOI: 10.1007/s10555-006-9032-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The three mammalian Runt homology domain transcription factors (Runx1, Runx2, Runx3) support biological control by functioning as master regulatory genes for the differentiation of distinct tissues. Runx proteins also function as cell context-dependent tumor suppressors or oncogenes. Abnormalities in Runx mediated gene expression are linked to cell transformation and tumor progression. Runx2 is expressed in mesenchymal linage cells committed to the osteoblast phenotype and is essential for bone formation. This skeletal transcription factor is aberrantly expressed at high levels in breast and prostate tumors and cells that aggressively metastasize to the bone environment. In cancer cells, Runx2 activates expression of bone matrix and adhesion proteins, matrix metalloproteinases and angiogenic factors that have long been associated with metastasis. In addition, Runx2 mediates the responses of cells to signaling pathways hyperactive in tumors, including BMP/TGFbeta and other growth factor signals. Runx2 forms co-regulatory complexes with Smads and other co-activator and co-repressor proteins that are organized in subnuclear domains to regulate gene transcription. These activities of Runx2 contribute to tumor growth in bone and the accompanying osteolytic disease, established by interfering with Runx2 functions in metastatic breast cancer cells. Inhibition of Runx2 in MDA-MB-231 cells transplanted to bone decreased tumorigenesis and prevented osteolysis. This review evaluates evidence that Runx2 regulates early metastatic events in breast and prostate cancers, tumor growth, and osteolytic bone disease. Consideration is given to the potential for inhibition of this transcription factor as a therapeutic strategy upstream of the regulatory events contributing to the complexity of metastasis to bone.
Collapse
Affiliation(s)
- J Pratap
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lao M, Marino V, Bartold PM. Immunohistochemical Study of Bone Sialoprotein and Osteopontin in Healthy and Diseased Root Surfaces. J Periodontol 2006; 77:1665-73. [PMID: 17032108 DOI: 10.1902/jop.2006.060087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Periodontal disease is marked by inflammation and damage to tooth-supporting tissues. In particular, damage occurs to factors present in cementum that are thought to have the ability to influence the regeneration of surrounding tissues. Bone sialoprotein and osteopontin are major non-collagenous proteins in mineralized connective tissues associated with precementoblast chemo-attraction, adhesion to the root surface, and cell differentiation. The purpose of this investigation was to determine whether the expression and distribution of bone sialoprotein and osteopontin on root surfaces affected by periodontitis are altered compared to healthy, non-diseased root surfaces. METHODS Thirty healthy and 30 periodontitis-affected teeth were collected. Following fixation and demineralization, specimens were embedded in paraffin, sectioned, and exposed to antibodies against bone sialoprotein and osteopontin. Stained sections were assessed using light microscopy. RESULTS Bone sialoprotein was not detected in the exposed cementum (absence of overlying periodontal ligament) of diseased teeth. In most areas where the periodontal ligament was intact, bone sialoprotein was detected for healthy and diseased teeth. For teeth reactive for bone sialoprotein, the matrix of the cementum just below the periodontal ligament was moderately stained. A similar immunoreactivity pattern for osteopontin was observed. CONCLUSIONS The absence of bone sialoprotein and osteopontin staining along exposed cementum surfaces may be due to structural and compositional changes in matrix components associated with periodontal disease. This may influence the ability for regeneration and new connective tissue attachment onto previously diseased root surfaces.
Collapse
Affiliation(s)
- Martin Lao
- Colgate Australian Clinical Dental Research Center, Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
47
|
Shimizu E, Nakayama Y, Nakajima Y, Kato N, Takai H, Kim DS, Arai M, Saito R, Sodek J, Ogata Y. Fibroblast growth factor 2 and cyclic AMP synergistically regulate bone sialoprotein gene expression. Bone 2006; 39:42-52. [PMID: 16466682 DOI: 10.1016/j.bone.2005.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/29/2005] [Accepted: 12/16/2005] [Indexed: 11/26/2022]
Abstract
Bone sialoprotein (BSP) is a noncollagenous protein of the mineralized bone extracellular matrix. We here report that FGF2 and cAMP act synergistically to stimulate BSP gene expression. Treatment of ROS 17/2.8 cells with either 10 ng/ml FGF2 or 1 microM FSK for 6 h resulted in 5.4- and 8.2-fold increases, respectively, in the levels of BSP mRNA. However, in the presence of both FGF2 and forskolin (FGF/FSK), BSP mRNA levels were increased synergistically by 20.4-fold. Using a luciferase reporter construct, encompassing BSP promoter nucleotides -116 to +60, transcription was also increased synergistically by 15.0-fold with FGF/FSK, compared to stimulations of 2.6- and 5.3-fold, respectively, for FGF2 and FSK alone. Transcriptional stimulation by FGF/FSK abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, FRE and Pit-1 elements. Whereas the FRE-protein complex was increased by FGF2 and FGF/FSK, the Pit-1-protein complex was decreased by FSK and FGF/FSK. Notably, transcriptional activity induced by FGF/FSK was blocked by protein kinase A, tyrosine kinase and MEK inhibitors. These studies indicate that the combinatorial effects of FGF and FSK act through PKA, tyrosine kinase and MAP-kinase-dependent pathways, which target the inverted CCAAT, CRE, FRE and Pit-1 elements in the BSP gene to synergistically increase BSP expression.
Collapse
Affiliation(s)
- Emi Shimizu
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kato N, Nakayama Y, Nakajima Y, Samoto H, Saito R, Yamanouchi F, Masunaga H, Shimizu E, Ogata Y. Regulation of bone sialoprotein (BSP) gene transcription by lipopolysaccharide. J Cell Biochem 2006; 97:368-79. [PMID: 16187297 DOI: 10.1002/jcb.20628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipopolysaccharide (LPS) is a major mediator of inflammatory responses in periodontal disease that inhibits bone formation and stimulates bone resorption. To determine the molecular mechanisms involved in the suppression of bone formation, we have analyzed the effects of LPS on BSP gene expression. Bone sialoprotein (BSP) is a mineralized tissue-specific protein that appears to function in the initial mineralization of bone. Treatment of osteoblast-like ROS 17/2.8 cells with LPS (1 microg/ml) for 12 h caused a marked reduction in BSP mRNA levels. The addition of antioxidant N-acetylcysteine (NAC; 20 mM) 30 min prior to stimulation with LPS attenuated the inhibition of BSP mRNA levels. Transient transfection analyses, using chimeric constructs of the rat BSP gene promoter linked to a luciferase reporter gene, revealed that LPS (1 microg/ml) suppressed expression of luciferase construct, encompassing BSP promoter nucleotides -108 to +60, transfected into ROS17/2.8 cells. The effects of LPS were inhibited by protein kinase A (PKA) inhibitor, H89 and the tyrosine kinase inhibitor, herbimycin A (HA). Introduction of 2 bp mutations in the inverted CCAAT box (ATTGG; nts -50 and -46), a cAMP response element (CRE; nts -75 to -68), a FGF response element (FRE; nts -92 to -85), and a pituitary specific transcription factor binding element (Pit-1; nts -111 to -105) showed that the LPS effects were mediated by the CRE and FRE. Whereas the FRE and 3'-FRE DNA-protein complexes were decreased by LPS, CRE DNA-protein complex did not change after LPS treatment. These studies, therefore, show that LPS suppresses BSP gene transcription through PKA and tyrosine kinase-dependent pathways and that the LPS effects are mediated through CRE and FRE elements in the proximal BSP gene promoter.
Collapse
Affiliation(s)
- Naoko Kato
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Natasha T, Kuhn M, Kelly O, Rittling SR. Override of the osteoclast defect in osteopontin-deficient mice by metastatic tumor growth in the bone. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:551-61. [PMID: 16436669 PMCID: PMC1606503 DOI: 10.2353/ajpath.2006.050480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteopontin (OPN) is a major noncollagenous protein of bone that is frequently up-regulated in tumors, where it enhances tumor growth. OPN-deficient mice are resistant to stimulated bone resorption, including that occurring after ovariectomy. Using a new syngeneic model of bone metastasis (r3T), we examined whether OPN-deficient mice are similarly resistant to bone loss resulting from osteolytic tumor growth. Transformed mammary epithelial cells, r3T, which express parathyroid hormone-related protein but not receptor activator of nuclear factor-kappaB ligand, were injected via the intracardiac route into both wild-type and OPN-/- mice. We measured tumor burden in the bone by quantitative polymerase chain reaction assay and evaluated bone loss by X-ray and microCT. Unexpectedly, bone loss was similar in OPN-/- and wild-type mice bearing similar-sized tumors. Osteoclast number was comparable in both genotypes, and the expression of bone sialoprotein was similar in tumor-bearing bones of both genotypes, excluding two potential mechanisms of overriding the defect. Taken together, these results indicate that in the absence of OPN, the bone loss associated with tumor growth at the bone site proceeds rapidly despite the osteoclast defects documented in OPN-/- mice, suggesting that the mechanism of bone loss due to tumor growth differs from that occurring in other pathologies.
Collapse
Affiliation(s)
- Tajneen Natasha
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
50
|
Shimizu E, Saito R, Nakayama Y, Nakajima Y, Kato N, Takai H, Kim DS, Arai M, Simmer J, Ogata Y. Amelogenin stimulates bone sialoprotein (BSP) expression through fibroblast growth factor 2 response element and transforming growth factor-beta1 activation element in the promoter of the BSP gene. J Periodontol 2005; 76:1482-9. [PMID: 16171436 DOI: 10.1902/jop.2005.76.9.1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Amelogenins are a complex mixture of hydrophobic proteins that are the major organic component of developing enamel. The principal function of the amelogenins and their degradation products has been assigned to structural roles in creating the space and milieu for promoting enamel mineralization. Enamel matrix derivative (EMD) has been used clinically for periodontal regeneration and its therapeutic effectiveness has been attributed to amelogenin, non-amelogenin enamel matrix proteins, and growth factors. While EMD is believed to induce periodontal regeneration, the precise mechanism is not known. Bone sialoprotein (BSP), an early phenotypic marker of osteoblast and cementoblast differentiation, has been implicated in the nucleation of hydroxyapatite during bone formation. In this study, we examined the ability of amelogenin to regulate BSP gene transcription in osteoblast like cells. METHODS We conducted Northern hybridization, transient transfection analyses, and gel mobility shift assays using full-length recombinant amelogenin to determine the molecular basis of the transcriptional regulation of BSP gene by amelogenin. RESULTS Recombinant amelogenin (1 microg/ml, 12 hours) increased BSP mRNA levels approximately 2.4-fold. In transient transfection analyses, amelogenin (1 microg/ml, 12 hours) increased luciferase activity approximately 1.5-fold in pLUC3 (nucleotides -116 to +60) and further increased pLUC5 (nucleotides -801 to +60) activity approximately 2.3-fold transfected into ROS 17/2.8 cells. Amelogenin also increased luciferase activities in rat stromal bone marrow cells. The effect of amelogenin was inhibited by the tyrosine kinase inhibitor herbimycin A. Transcriptional stimulation by amelogenin was almost completely abrogated in cells expressing a BSP promoter construct with a mutation in the fibroblast growth factor 2 (FGF2) response element (FRE). Gel mobility shift assays with radiolabeled FRE and transforming growth factor-beta1 (TGF-beta1) activation element (TAE) ds-oligonucleotides revealed increased binding of nuclear proteins from amelogenin-stimulated ROS 17/2.8 cells. CONCLUSION Amelogenin stimulation alters BSP gene transcription by inducing nuclear proteins that bind to the FRE and TAE in the rat BSP gene promoter.
Collapse
Affiliation(s)
- Emi Shimizu
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|