1
|
Ceco E, Celli D, Weinberg S, Shigemura M, Welch LC, Volpe L, Chandel NS, Bharat A, Lecuona E, Sznajder JI. Elevated CO 2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Front Physiol 2021; 11:630910. [PMID: 33551852 PMCID: PMC7859333 DOI: 10.3389/fphys.2020.630910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary diseases (COPD) and affects ventilatory and non-ventilatory skeletal muscles. We have previously reported that hypercapnia (elevated CO2 levels) causes muscle atrophy through the activation of the AMPKα2-FoxO3a-MuRF1 pathway. In the present study, we investigated the effect of normoxic hypercapnia on skeletal muscle regeneration. We found that mouse C2C12 myoblasts exposed to elevated CO2 levels had decreased fusion index compared to myoblasts exposed to normal CO2. Metabolic analyses of C2C12 myoblasts exposed to high CO2 showed increased oxidative phosphorylation due to increased fatty acid oxidation. We utilized the cardiotoxin-induced muscle injury model in mice exposed to normoxia and 10% CO2 for 21 days and observed that muscle regeneration was delayed. High CO2-delayed differentiation in both mouse C2C12 myoblasts and skeletal muscle after injury and was restored to control levels when cells or mice were treated with a carnitine palmitoyltransfearse-1 (CPT1) inhibitor. Taken together, our data suggest that hypercapnia leads to changes in the metabolic activity of skeletal muscle cells, which results in impaired muscle regeneration and recovery after injury.
Collapse
Affiliation(s)
- Ermelinda Ceco
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Diego Celli
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Samuel Weinberg
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lena Volpe
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
|
3
|
|
4
|
Thomassen M, Christensen PM, Gunnarsson TP, Nybo L, Bangsbo J. Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players. J Appl Physiol (1985) 2010; 108:898-905. [DOI: 10.1152/japplphysiol.01015.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined muscle adaptations and alterations in performance of highly trained soccer players with intensified training or training cessation. Eighteen elite soccer players were, for a 2-wk period, assigned to either a group that performed high-intensity training with a reduction in the amount of training (HI, n = 7), or an inactivity group without training (IN, n = 11). HI improved ( P < 0.05) performance of the 4th, 6th, and 10th sprint in a repeated 20-m sprint test, and IN reduced ( P < 0.05) performance in the 5th to the 10th sprints after the 2-wk intervention period. In addition, the Yo-Yo intermittent recovery level 2 test performance of IN was lowered from 845 ± 48 to 654 ± 30 m. In HI, the protein expression of the Na+-K+ pump α2-isoform was 15% higher ( P < 0.05) after the intervention period, whereas no changes were observed in α1- and β1-isoform expression. In IN, Na+-K+ pump expression was not changed. In HI, the FXYD1ser68-to-FXYD1 ratio was 27% higher ( P < 0.01) after the intervention period, and, in IN, the AB_FXYD1ser68 signal was 18% lower ( P < 0.05) after inactivity. The change in FXYD1ser68-to-FXYD1 ratio was correlated ( r2 = 0.35; P < 0.05) with change in performance in repeated sprint test. The present data suggest that short-term intensified training, even for trained soccer players, can increase muscle Na+-K+ pump α2-isoform expression, and that cessation of training for 2 wk does not affect the expression of Na+-K+ pump isoforms. Resting phosphorylation status of the Na+-K+ pump is changed by training and inactivity and may play a role in performance during repeated, intense exercise.
Collapse
Affiliation(s)
- Martin Thomassen
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M. Christensen
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P. Gunnarsson
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Bangsbo J, Gunnarsson TP, Wendell J, Nybo L, Thomassen M. Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans. J Appl Physiol (1985) 2009; 107:1771-80. [PMID: 19797693 DOI: 10.1152/japplphysiol.00358.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners as a result of a reduced amount of training combined with speed endurance training. For a 6- to 9-wk period, 17 runners were assigned to either a speed endurance group with a 25% reduction in the amount of training but including speed endurance training consisting of six to twelve 30-s sprint runs 3-4 times/wk (SET group n = 12) or a control group (n = 5), which continued the endurance training ( approximately 55 km/wk). For the SET group, the expression of the muscle Na(+)-K(+) pump alpha(2)-subunit was 68% higher (P < 0.05) and the plasma K(+) level was reduced (P < 0.05) during repeated intense running after 9 wk. Performance in a 30-s sprint test and the first of the supramaximal exhaustive runs was improved (P < 0.05) by 7% and 36%, respectively, after the speed endurance training period. In the SET group, maximal O(2) uptake was unaltered, but the 3-km (3,000-m) time was reduced (P < 0.05) from 10.4 +/- 0.1 to 10.1 +/- 0.1 min and the 10-km (10,000-m) time was improved from 37.3 +/- 0.4 to 36.3 +/- 0.4 min (means +/- SE). Muscle protein expression and performance remained unaltered in the control group. The present data suggest that both short- and long-term exercise performances can be improved with a reduction in training volume if speed endurance training is performed and that the Na(+)-K(+) pump plays a role in the control of K(+) homeostasis and in the development of fatigue during repeated high-intensity exercise.
Collapse
Affiliation(s)
- Jens Bangsbo
- Department of Exercise and Sport Sciences, Section of Human Physiology, Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
6
|
Green HJ, Barr DJ, Fowles JR, Sandiford SD, Ouyang J. Malleability of human skeletal muscle Na+-K+-ATPase pump with short-term training. J Appl Physiol (1985) 2004; 97:143-8. [PMID: 15220317 DOI: 10.1152/japplphysiol.00559.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the hypothesis that short-term submaximal training would result in changes in Na+-K+-ATPase content, activity, and isoform distribution in skeletal muscle, seven healthy, untrained men [peak aerobic power (peak oxygen consumption; V̇o2 peak) = 45.6 ml·kg−1·min−1 (SE 5.4)] cycled for 2 h/day at 60–65% V̇o2 peak for 6 days. Muscle tissue, sampled from the vastus lateralis before training (0 days) and after 3 and 6 days of training and analyzed for Na+-K+-ATPase content, as assessed by the vanadate facilitated [3H]ouabain-binding technique, was increased ( P < 0.05) at 3 days (294 ± 8.6 pmol/g wet wt) and 6 days (308 ± 15 pmol/g wet wt) of training compared with 0 days (272 ± 9.7 pmol/g wet wt). Maximal Na+-K+-ATPase activity as evaluated by the 3- O-methylfluorescein phosphatase assay was increased ( P < 0.05) by 6 days (53.4 ± 5.9 nmol·h−1·mg protein−1) but not by 3 days (35.9 ± 4.5 nmol·h−1·mg protein−1) compared with 0 days (37.8 ± 3.7 nmol·h−1·mg protein−1) of training. Relative isoform distribution, measured by Western blot techniques, indicated increases ( P < 0.05) in α2-content by 3 days and β1-content by 6 days of training. These results indicate that prolonged aerobic exercise represents a potent stimulus for the rapid adaptation of Na+-K+-ATPase content, isoform, and activity characteristics.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Clausen, Torben. Na+-K+ Pump Regulation and Skeletal Muscle Contractility. Physiol Rev 83: 1269-1324, 2003; 10.1152/physrev.00011.2003.—In skeletal muscle, excitation may cause loss of K+, increased extracellular K+ ([K+]o), intracellular Na+ ([Na+]i), and depolarization. Since these events interfere with excitability, the processes of excitation can be self-limiting. During work, therefore, the impending loss of excitability has to be counterbalanced by prompt restoration of Na+-K+ gradients. Since this is the major function of the Na+-K+ pumps, it is crucial that their activity and capacity are adequate. This is achieved in two ways: 1) by acute activation of the Na+-K+ pumps and 2) by long-term regulation of Na+-K+ pump content or capacity. 1) Depending on frequency of stimulation, excitation may activate up to all of the Na+-K+ pumps available within 10 s, causing up to 22-fold increase in Na+ efflux. Activation of the Na+-K+ pumps by hormones is slower and less pronounced. When muscles are inhibited by high [K+]o or low [Na+]o, acute hormone- or excitation-induced activation of the Na+-K+ pumps can restore excitability and contractile force in 10-20 min. Conversely, inhibition of the Na+-K+ pumps by ouabain leads to progressive loss of contractility and endurance. 2) Na+-K+ pump content is upregulated by training, thyroid hormones, insulin, glucocorticoids, and K+ overload. Downregulation is seen during immobilization, K+ deficiency, hypoxia, heart failure, hypothyroidism, starvation, diabetes, alcoholism, myotonic dystrophy, and McArdle disease. Reduced Na+-K+ pump content leads to loss of contractility and endurance, possibly contributing to the fatigue associated with several of these conditions. Increasing excitation-induced Na+ influx by augmenting the open-time or the content of Na+ channels reduces contractile endurance. Excitability and contractility depend on the ratio between passive Na+-K+ leaks and Na+-K+ pump activity, the passive leaks often playing a dominant role. The Na+-K+ pump is a central target for regulation of Na+-K+ distribution and excitability, essential for second-to-second ongoing maintenance of excitability during work.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Physiology, University of Aarhus, Arhus, Denmark.
| |
Collapse
|
8
|
Ng YC, Nagarajan M, Jew KN, Mace LC, Moore RL. Exercise training differentially modifies age-associated alteration in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2003; 285:R733-40. [PMID: 12805093 DOI: 10.1152/ajpregu.00266.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tests the hypothesis that endurance exercise training (ETr) reverses age-associated alterations in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Expression of the isoforms was examined in 16-mo-old sedentary middle-aged, 29-mo-old sedentary senescent, and 29-mo-old treadmill exercise-trained senescent Fischer 344 x Brown Norway rats. Levels of the alpha1-isoform increased with age in red gastrocnemius (GR), white gastrocnemius (GW), and extensor digitorum longus (EDL) muscles, and ETr further increased its levels. Levels of the alpha2-isoform were unchanged in GR, had a strong trend for a decrease in GW, and decreased significantly in EDL. ETr increased expression of the alpha2-isoform in all three muscle groups. There was no increase in expression of the beta1-isoform in GR, GW, or EDL with age, whereas ETr markedly increased its levels in the muscles. There was a marked decrease with age in expression of the beta2-isoform in the muscle groups that was not reversed by ETr. By contrast, beta3-isoform levels increased with age in GR and GW, and ETr was able to reverse this increase. Na+-K+-ATPase enzyme activity was unchanged with age in GR and GW but increased in EDL. ETr increased enzyme activity in GR and GW and did not change in EDL. Myosin heavy chain isoforms in the muscle groups did not change significantly with age; ETr caused a general shift toward more oxidative fibers. Thus ETr differentially modifies age-associated alterations in expression of Na+-K+-ATPase subunit isoforms, and a mechanism(s) other than physical inactivity appears to play significant role in some of the age-associated changes.
Collapse
Affiliation(s)
- Yuk-Chow Ng
- Department of Pharmacology, Milton S Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|