1
|
Ramshani Z, Fan F, Wei A, Romanello-Giroud-Joaquim M, Gil CH, George M, Yoder MC, Hanjaya-Putra D, Senapati S, Chang HC. A multiplexed immuno-sensor for on-line and automated monitoring of tissue culture protein biomarkers. Talanta 2020; 225:122021. [PMID: 33592751 DOI: 10.1016/j.talanta.2020.122021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Frequent on-line and automated monitoring of multiple protein biomarkers level secreted in the culture media during tissue growth is essential for the successful development of Tissue Engineering and Regenerative Medicine (TERM) products. Here, we present a low-cost, rapid, reliable, and integrable anion-exchange membrane-(AEM) based multiplexed sensing platform for this application. Unlike the gold-standard manual ELISA test, incubation/wash steps are optimized for each target and precisely metered in microfluidic chips to enhance selectivity. Unlike optical detection and unreliable visual detection for the ELISA test, which require standardization for every usage, the AEM ion current signal also offers robustness, endowed by the pH and ionic strength control capability of the ion-selective membrane, such that a universal standard curve can be used to calibrate all runs. The electrical signal is enhanced by highly charged silica nanoparticle reporters, which also act as hydrodynamic shear amplifiers to enhance selectivity during wash. This AEM-based sensing platform is tested with vascular protein biomarkers, Endothelin-1 (ET-1), Angiogenin (ANG) and Placental Growth Factor (PlGF). The limit of detection and three-decade dynamic range are comparable to ELISA assay but with a significantly reduced assay time of 1 h vs 7 h, due to the elimination of calibration and blocking steps. Optimized protocol for each target renders the detection highly reliable with more than 98% confidence. The multiplexed detection capability of the platform is also demonstrated by simultaneous detection of ET-1, ANG and PlGF in 40 μl of the vascular endothelial cell culture supernatants using three-membrane AEM sensor and the performance is validated against ELISA.
Collapse
Affiliation(s)
- Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alicia Wei
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Miguel Romanello-Giroud-Joaquim
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Chang-Hyun Gil
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matt George
- Vascugen Inc., 5602 Research Park Blvd, Ste 213, Madison, WI 53719, USA
| | - Mervin C Yoder
- Vascugen Inc., 5602 Research Park Blvd, Ste 213, Madison, WI 53719, USA
| | - Donny Hanjaya-Putra
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Development and Validation of a Method for Quantifying HER1 Extracellular Domain in Culture Supernatant by RP-HPLC. Chromatographia 2016. [DOI: 10.1007/s10337-016-3032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Nilsang S, Nehru V, Plieva FM, Nandakumar KS, Rakshit SK, Holmdahl R, Mattiasson B, Kumar A. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnol Prog 2009; 24:1122-31. [PMID: 19194922 DOI: 10.1002/btpr.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell proliferation and long-term production of monoclonal antibody IgG(2b) by M2139 hybridoma cells immobilized in macroporous gel particles (MGPs) in packed-bed reactor were studied for a period of 60 days. The MGPs were made of supermacroporous gels produced in frozen conditions from crosslinked polyacrylamide and modified with gelatin which were housed in special plastic carriers (7 x 9 mm(2)). Cells were trapped in the interior part of MGPs by attaching to the void space of the gel matrix as three-dimensional (3D) cultivation using gelatin as a substrate layer. Optimizing productivity by hybridoma cell relies on understanding regulation of antibody production. In this study, the behavior of M2139 cells in two-dimensional cultures on multiwell plate surfaces was also investigated. The effect of three different medium such as basal medium Dulbecco's modified Eagle's medium (D-MEM) containing L-glutamine or L-glutamine + 2 mM alpha-ketoglutarate or L-alanyl-glutamine (GlutaMAXtrade mark) was studied prior to its use in 3D cultivation. The kinetics of cell growth in basal medium containing L-glutamine + alpha-ketoglutarate was similar to cells grown on GlutaMAX containing medium, whereas D-MEM containing L-glutamine showed lower productivity. With the maximal viable cell density (6.85 x 10(6) cells mL(-1)) and highest specific mAb production rate (3.9 mug mL(-1) 10(-4) viable cell day(-1)), D-MEM-GlutaMAX was further selected for 3D cultivation. Cells in MGPs were able to grow and secrete antibody for 30 days in packed-bed batch reactor, before a fresh medium reservoir was replaced. After being supplied with fresh medium, cells again showed continuous growth for another 30 days with mAb production efficiency of 50%. These results demonstrate that MGPs can be used efficiently as supporting carrier for long-term monoclonal antibody production.
Collapse
Affiliation(s)
- Suthasinee Nilsang
- Dept of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Vaidyanathan S, Macaloney G, Vaughan J, McNeil B, Harvey LM. Monitoring of Submerged Bioprocesses. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Jain E, Kumar A. Upstream processes in antibody production: Evaluation of critical parameters. Biotechnol Adv 2008; 26:46-72. [DOI: 10.1016/j.biotechadv.2007.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
6
|
Valdés R, Leyva A, Geada D, Fernández EG, Padilla S, Tamayo A. Quantification of Monoclonal Antibodies from Bioreactor Supernatants Using Protein-G Sepharose Chromatography. Chromatographia 2007. [DOI: 10.1365/s10337-007-0455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Nilsang S, Nandakumar KS, Galaev IY, Rakshit SK, Holmdahl R, Mattiasson B, Kumar A. Monoclonal Antibody Production Using a New Supermacroporous Cryogel Bioreactor. Biotechnol Prog 2007. [DOI: 10.1002/bp0700399] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|