1
|
Bryan L, Henry M, Kelly RM, Frye CC, Osborne MD, Clynes M, Meleady P. Mapping the molecular basis for growth related phenotypes in industrial producer CHO cell lines using differential proteomic analysis. BMC Biotechnol 2021; 21:43. [PMID: 34301236 PMCID: PMC8305936 DOI: 10.1186/s12896-021-00704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Background The ability to achieve high peak viable cell density earlier in CHO cell culture and maintain an extended cell viability throughout the production process is highly desirable to increase recombinant protein yields, reduce host cell impurities for downstream processing and reduce the cost of goods. In this study we implemented label-free LC-MS/MS proteomic profiling of IgG4 producing CHO cell lines throughout the duration of the cell culture to identify differentially expressed (DE) proteins and intracellular pathways associated with the high peak viable cell density (VCD) and extended culture VCD phenotypes. Results We identified key pathways in DNA replication, mitotic cell cycle and evasion of p53 mediated apoptosis in high peak VCD clonally derived cell lines (CDCLs). ER to Golgi vesicle mediated transport was found to be highly expressed in extended culture VCD CDCLs while networks involving endocytosis and oxidative stress response were significantly downregulated. Conclusion This investigation highlights key pathways for targeted engineering to generate desirable CHO cell phenotypes for biotherapeutic production. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00704-8.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ronan M Kelly
- Eli Lilly and Company, LTC-North, 1200 Kentucky Avenue, Indianapolis, IN, 46225, USA
| | - Christopher C Frye
- Eli Lilly and Company, LTC-North, 1200 Kentucky Avenue, Indianapolis, IN, 46225, USA
| | | | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
2
|
Mellahi K, Cambay F, Brochu D, Gilbert M, Perrier M, Ansorge S, Durocher Y, Henry O. Process development for an inducible rituximab-expressing Chinese hamster ovary cell line. Biotechnol Prog 2018; 35:e2742. [PMID: 30414355 DOI: 10.1002/btpr.2742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Inducible mammalian expression systems are becoming increasingly available and are not only useful for the production of cytotoxic/cytostatic products, but also confer the unique ability to uncouple the growth and production phases. In this work, we have specifically investigated how the cell culture state at the time of induction influences the cumate-inducible expression of recombinant rituximab by a GS-CHO cell line. To this end, cells grown in batch and fed-batch cultures were induced at increasing cell densities (1 to 10 × 10 6 cells/mL). In batch, the cell specific productivity and the product yield were found to reduce with increasing cell density at induction. A dynamic feeding strategy using a concentrated nutrient solution applied prior and postinduction allowed to significantly increase the integral of viable cells and led to a 3-fold increase in the volumetric productivity (1.2 g/L). The highest product yields were achieved for intermediate cell densities at induction, as cultures induced during the late exponential phase (10 × 10 6 cells/mL) were associated with a shortened production phase. The final glycosylation patterns remained however similar, irrespective of the cell density at induction. The kinetics of growth and production in a 2 L bioreactor were largely comparable to shake flasks for a similar cell density at induction. The degree of galactosylation was found to decrease over time, but the final glycan distribution at harvest was consistent to that of the shake flasks cultures. Taken together, our results provide useful insights for the rational development of fed-batch cell culture processes involving inducible CHO cells. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2742, 2019.
Collapse
Affiliation(s)
- Kahina Mellahi
- Dept. of Chemical Engineering, École Polytechnique de Montréal, Montréal, QC, H3C 3A7
| | - Florian Cambay
- Dept. of Chemical Engineering, École Polytechnique de Montréal, Montréal, QC, H3C 3A7
| | - Denis Brochu
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON
| | - Michel Gilbert
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON
| | - Michel Perrier
- Dept. of Chemical Engineering, École Polytechnique de Montréal, Montréal, QC, H3C 3A7
| | - Sven Ansorge
- Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC
| | - Olivier Henry
- Dept. of Chemical Engineering, École Polytechnique de Montréal, Montréal, QC, H3C 3A7
| |
Collapse
|
3
|
Reinhart D, Damjanovic L, Castan A, Ernst W, Kunert R. Differential gene expression of a feed-spiked super-producing CHO cell line. J Biotechnol 2018; 285:23-37. [PMID: 30157452 DOI: 10.1016/j.jbiotec.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 08/25/2018] [Indexed: 01/09/2023]
Abstract
Feed supplements are concentrated cell culture media that contain a variety of nutrients, which can be added during a bioprocess. During fed-batch cultivation, feed media are typically added to a growing cell culture to maximize cell and product concentrations. In this study, only a single shot of feed medium was added on day 0 to a basal cell culture medium and compared to non-supplemented basal medium (feed-spiked at day 0 versus control experiments) by cultivation of a recombinant mAb expressing CHO cell line in batch mode under controlled conditions in a bioreactor. Since the feed-spike at day 0 was based on existing medium components without introducing additional supplements, a desirable process with decreased complexity was generated. Unlike cells in basal medium, feed-spiked cultures reached almost 2× higher peak cell concentrations (10 × 106 c/mL vs. 18 × 106 c/mL) and 3× higher antibody concentrations (0.8 g/L vs. 2.4 g/L). Batch process time and the integral over the viable cell count were similar for both process types. Constantly high cell-specific production rates in feed-spiked cultures (70 pg/cell/day) compared to continuously declining rates in basal medium (from 70 to 10 pg/cell/day) were responsible for an overall 70% higher cell-specific production rate and the higher product concentrations. To associate gene expression patterns to different process proceedings, transcriptome analysis was performed using microarrays. Several transcripts that are involved with glutamine de novo synthesis and citric acid cycle were significantly upregulated on several days in feed-spiked cultures. The top identified gene ontology (GO) terms related well to cell cycle and primary metabolism, cellular division as well as nucleobase formation or regulation, which indicated a more active proliferative state for feed-spiked cultures. KEGG biochemical pathway analysis and Gene set enrichment analysis (GSEA) further confirmed these findings from a complementary perspective. Moreover, several interesting gene targets, which have not yet been associated with recombinant protein expression, were identified that related to a higher proliferative state, growth, protein synthesis, cell-size control, metabolism, cell survival as well as genes that are associated with the control of the mammalian target of rapamycin (mTOR) in feed-spiked cultures. Analysis of critical product quality attributes (i.e. glycosylation, charge variants and size distribution) showed that feed-spiking did not change antibody quality.
Collapse
Affiliation(s)
- David Reinhart
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Lukas Damjanovic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Andreas Castan
- GE Healthcare Life Sciences AB, Björkgatan 30, 75184, Uppsala, Sweden.
| | - Wolfgang Ernst
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Chaturvedi P, Zhao B, Zimmerman DL, Belmont AS. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther 2018; 25:376-391. [PMID: 29930343 PMCID: PMC6195848 DOI: 10.1038/s41434-018-0021-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/20/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the “BAC TG-EMBED” method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - David L Zimmerman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.,Biology Department, College of the Ozarks, Point Lookout, MO, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
5
|
Nadeem T, Khan MA, Ijaz B, Ahmed N, Rahman ZU, Latif MS, Ali Q, Rana MA. Glycosylation of Recombinant Anticancer Therapeutics in Different Expression Systems with Emerging Technologies. Cancer Res 2018; 78:2787-2798. [DOI: 10.1158/0008-5472.can-18-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
6
|
Davami F, Eghbalpour F, Nematollahi L, Barkhordari F, Mahboudi F. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles. IRANIAN BIOMEDICAL JOURNAL 2015; 19:194-205. [PMID: 26232332 PMCID: PMC4649854 DOI: 10.7508/ibj.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. Methods: In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. Results: In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. Conclusion: The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.
Collapse
Affiliation(s)
- Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Eghbalpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Science and Research Branch, Islamic Azad University of Arak, Markazi Province, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
7
|
Ley D, Seresht AK, Engmark M, Magdenoska O, Nielsen KF, Kildegaard HF, Andersen MR. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production. Biotechnol Bioeng 2015; 112:2373-87. [PMID: 25995028 PMCID: PMC5034845 DOI: 10.1002/bit.25652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Ley
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.,Cell Culture Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Ali Kazemi Seresht
- Cell Culture Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Mikael Engmark
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.,Cell Culture Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Olivera Magdenoska
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Sheikholeslami Z, Jolicoeur M, Henry O. The impact of the timing of induction on the metabolism and productivity of CHO cells in culture. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Yokota M, Tanji Y. Analysis of cell-cycle-dependent production of tissue plasminogen activator analogue (pamiteplase) by CHO cells. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ouyang A, Bennett P, Zhang A, Yang ST. Affinity chromatographic separation of secreted alkaline phosphatase and glucoamylase using reactive dyes. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM. The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng 2006; 93:829-35. [PMID: 16329142 DOI: 10.1002/bit.20789] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There are a growing number of reports on the sub-physiological temperature culturing (<37 degrees C) of mammalian cells for increased recombinant protein yield, although the effect is variable between cell lines, expression systems, and the product of interest. What is becoming clear is that exposing mammalian cells to sub-physiological temperatures invokes a coordinated cellular response involving modulation of the cell cycle, metabolism, transcription, translation, and the cell cytoskeleton. Opportunities currently exist for further enhancement of the cold-shock effect on recombinant protein production in mammalian cells through advancements in our understanding of the mechanisms involved in the cold-shock response.
Collapse
Affiliation(s)
- Mohamed B Al-Fageeh
- Protein Science Group, Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | | | |
Collapse
|
12
|
Ouyang A, Yang ST. Effects of mixing intensity on cell seeding and proliferation in three-dimensional fibrous matrices. Biotechnol Bioeng 2006; 96:371-80. [PMID: 16865727 DOI: 10.1002/bit.21091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonwoven fibrous matrices have been widely used in cell and tissue cultures because their three-dimensional (3-D) structures with large surface areas and pore spaces can support high-density cell growth. Although cell adherence and growth on 2-D surfaces have been thoroughly investigated, very little is known for cells cultured in 3-D matrices. The effects of mixing intensity on cell seeding, adherence, and growth in fibrous matrices were thus investigated. Chinese Hamster Ovary and osteosarcoma cells were inoculated into nonwoven polyethylene terephthalate matrices by dynamic and static seeding methods, of which the former was found to be superior in seeding efficiency and cell distribution in the matrices. Dynamic seeding increased seeding efficiency from approximately 40% to more than 90%. When higher mixing intensities were applied, both cell attachment and detachment rates increased. Cell attachment was transport limited, as indicated by the increased attachment rate with increasing the mass transfer coefficient of the cells. Meanwhile, cell detachment from the 3-D matrix can be described by the Bell model. The effects of matrix pore size on cell adherence and proliferation were also investigated. In general, the smaller pore size is favorable to cell attachment and proliferation. Further analysis revealed that the interaction between mixing intensity and pore size played a vital role in hydrodynamic damage to cells, which was found to be significant when the Kolomogorov eddy size was smaller than the matrix pores. Increasing mixing intensity also increased oxygen transfer, decreased the lactate yield from glucose, and improved cell growth.
Collapse
Affiliation(s)
- Anli Ouyang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Ave. Columbus, Ohio 43210, USA
| | | |
Collapse
|
13
|
Abstract
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Many of these applications involve complex glycoproteins and antibodies with relatively high production needs. These demands have driven the development of a variety of improvements in protein expression technology, particularly involving mammalian and microbial culture systems.
Collapse
Affiliation(s)
- Dana C Andersen
- Cell Culture & Fermentation Research & Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|