1
|
Hao R, Ma K, Ru Y, Li D, Song G, Lu B, Liu H, Li Y, Zhang J, Wu C, Zhang G, Hu H, Luo J, Zheng H. Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring Foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol 2021; 18:2330-2341. [PMID: 33849391 DOI: 10.1080/15476286.2021.1907055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The foot-and-mouth disease virus (FMDV) is the causative agent of FMD, a highly infectious and devastating viral disease of domestic and wild cloven-hoofed animals. FMD affects livestock and animal products' national and international trade, causing severe economic losses and social consequences. Currently, inactivated vaccines play a vital role in FMD control, but they have several limitations. The genetic code expansion technology provides powerful strategies for generating premature termination codon (PTC)-harbouring virus as a live but replication-incompetent viral vaccine. However, this technology has not been explored for the design and development of new FMD vaccines. In this study, we first expanded the genetic code of the FMDV genome via a transgenic cell line containing an orthogonal translation machinery. We demonstrated that the transgenic cells stably integrated the orthogonal pyltRNA/pylRS pair into the genome and enabled efficient, homogeneous incorporation of unnatural amino acids into target proteins in mammalian cells. Next, we constructed 129 single-PTC FMDV mutants and four dual-PTC FMDV mutants after considering the tolerance, location, and potential functions of those mutated sites. Amber stop codons individually substituted the selected amino acid codons in four viral proteins (3D, L, VP1, and VP4) of FMDV. We successfully rescued PTC-FMDV mutants, but the amber codon unexpectedly showed a highly degree of mutation rate during PTC-FMDV packaging and replication. Our findings highlight that the genetic code expansion technology for the generation of PTC-FMD vaccines needs to be further improved and that the genetic stability of amber codons during the packaging and replication of FMDV is a concern.
Collapse
Affiliation(s)
- Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kun Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gaoyuan Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingzhou Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiaoyan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunping Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guicai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, OIE/National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Gao Y, Sun SQ, Guo HC. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol J 2016; 13:107. [PMID: 27334704 PMCID: PMC4917953 DOI: 10.1186/s12985-016-0561-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) represses host translation machinery, blocks protein secretion, and cleaves cellular proteins associated with signal transduction and the innate immune response to infection. Non-structural proteins (NSPs) and non-coding elements (NCEs) of FMDV play a critical role in these biological processes. The FMDV virion consists of capsid and nucleic acid. The virus genome is a positive single stranded RNA and encodes a single long open reading frame (ORF) flanked by a long structured 5ʹ-untranslated region (5ʹ-UTR) and a short 3ʹ-UTR. The ORF is translated into a polypeptide chain and processed into four structural proteins (VP1, VP2, VP3, and VP4), 10 NSPs (Lpro, 2A, 2B, 2C, 3A, 3B1–3, 3Cpro, and 3Dpol), and some cleavage intermediates. In the past decade, an increasing number of studies have begun to focus on the molecular pathogenesis of FMDV NSPs and NCEs. This review collected recent research progress on the biological functions of these NSPs and NCEs on the replication and host cellular regulation of FMDV to understand the molecular mechanism of host–FMDV interactions and provide perspectives for antiviral strategy and development of novel vaccines.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Shi-Qi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
3
|
Genomic Changes in an Attenuated ZB Strain of Foot-and-Mouth Disease Virus Serotype Asia1 and Comparison with Its Virulent Parental Strain. Int J Genomics 2014; 2014:978609. [PMID: 25386556 PMCID: PMC4216683 DOI: 10.1155/2014/978609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/03/2023] Open
Abstract
The molecular basis of attenuation of foot-and-mouth disease virus (FMDV) serotype Asia1 ZB strain remains unknown. To understand the genetic changes of attenuation, we compared the entire genomes of three different rabbit-passaged attenuated ZB strains (ZB/CHA/58(att), ZBRF168, and ZBRF188) and their virulent parental strains (ZBCF22 and YNBS/58). The results showed that attenuation may be brought about by 28 common amino acid substitutions in the coding region, with one nucleotide point mutation in the 5′-untranslated region (5′-UTR) and another one in the 3′-UTR. In addition, a total of 21 nucleotides silent mutations had been found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the ZB strain in cattle. This will contribute to elucidation of attenuating molecular basis of the FMDV ZB strain.
Collapse
|
4
|
Establishment and evaluation of stable cell lines inhibiting foot-and-mouth disease virus by RNA interference. BIOMED RESEARCH INTERNATIONAL 2014; 2014:109428. [PMID: 24683539 PMCID: PMC3934452 DOI: 10.1155/2014/109428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/01/2014] [Indexed: 11/18/2022]
Abstract
RNA interference (RNAi) has been proved to be a powerful tool for foot-and-mouth disease virus FMDV inhibition in vitro and in vivo. We established five stable baby hamster kidney 21 cell lines (BHK-21) containing five short hairpin RNAs (shRNAs) expression plasmids (p3D1shRNA, p3D2shRNA, p3D3shRNA, p3D4shRNA, and p3D5shRNA) targeting 3D gene of FMDV. Immunofluorescent assay, virus titration, and real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) were conducted to detect the effect of shRNAs on FMDV replication. After challenged with FMDV of O/CHA/99, two cell lines (p3D1shRNA and p3D4shRNA) showed a significant reduction in the synthesis of viral protein and RNA, accompanied by a sharp decrease in viral yield, and the inhibition could last for at least thirty passages. We developed an efficient procedure for the establishment and evaluation of stable cell lines for anti-FMDV research based on RNAi technology, which can be a candidate method for anti-FMDV research.
Collapse
|
5
|
Ma XX, Feng YP, Liu JL, Ma B, Chen L, Zhao YQ, Guo PH, Guo JZ, Ma ZR, Zhang J. The effects of the codon usage and translation speed on protein folding of 3Dpol of foot-and-mouth disease virus. Vet Res Commun 2013; 37:243-50. [DOI: 10.1007/s11259-013-9564-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
6
|
Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL. Comparative genomics of foot-and-mouth disease virus. J Virol 2005; 79:6487-504. [PMID: 15858032 PMCID: PMC1091679 DOI: 10.1128/jvi.79.10.6487-6504.2005] [Citation(s) in RCA: 356] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present complete genome sequences, including a comparative analysis, of 103 isolates of foot-and-mouth disease virus (FMDV) representing all seven serotypes and including the first complete sequences of the SAT1 and SAT3 genomes. The data reveal novel highly conserved genomic regions, indicating functional constraints for variability as well as novel viral genomic motifs with likely biological relevance. Previously undescribed invariant motifs were identified in the 5' and 3' untranslated regions (UTR), as was tolerance for insertions/deletions in the 5' UTR. Fifty-eight percent of the amino acids encoded by FMDV isolates are invariant, suggesting that these residues are critical for virus biology. Novel, conserved sequence motifs with likely functional significance were identified within proteins L(pro), 1B, 1D, and 3C. An analysis of the complete FMDV genomes indicated phylogenetic incongruities between different genomic regions which were suggestive of interserotypic recombination. Additionally, a novel SAT virus lineage containing nonstructural protein-encoding regions distinct from other SAT and Euroasiatic lineages was identified. Insights into viral RNA sequence conservation and variability and genetic diversity in nature will likely impact our understanding of FMDV infections, host range, and transmission.
Collapse
Affiliation(s)
- C Carrillo
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 N. Eagleville Road, Unit-3089, Storrs, CT 06269-3089, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mohapatra JK, Sanyal A, Hemadri D, Tosh C, Sabarinath GP, Venkataramanan R. Sequence and phylogenetic analysis of the L and VP1 genes of foot-and-mouth disease virus serotype Asia1. Virus Res 2002; 87:107-18. [PMID: 12191774 DOI: 10.1016/s0168-1702(02)00006-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most of the molecular epidemiological studies of foot-and-mouth disease virus (FMDV) are based on comparison of VP1 gene sequence. In this report, we determine the nucleotide (nt) sequence of the L (603 nt) and VP1 (633 nt) genes of 27 FMDV serotype Asia 1 isolates recovered from different outbreaks in India, and compared with each other and the vaccine strain, IND 63/72, used in the country. Independent phylogenetic analyses on both the aligned gene sequences identified two major lineages (designated A & B) in the Asia 1 isolates. Both L- and VP1-based trees were congruent with respect to the major branching pattern of the isolates. The lineage A is represented by the isolates of 1986-2000 including the vaccine strain IND 63/72, whereas, lineage B appeared to be dominant and responsible for most of the recent outbreaks. A correlation was observed between the clustering of the isolates in the phylogenetic tree and the amino acid changes at many of the positions in VP1 as well as in L protein. The annual rate of evolution in L and VP1 genes was found similar and estimated to be 4.0 x 10(-3) and 3.8 x 10(-3) substitutions per nucleotide, respectively. Our result, largely from the congruence in phylogenetic trees and the rate of evolution in both the genes, suggests the possibility for the use of L gene sequence in phylogenetic comparison of FMDV.
Collapse
Affiliation(s)
- Jajati Kesari Mohapatra
- Project Directorate on FMD Indian Veterinary Research Institute Campus, Mukteswar-Kumaon, Nainital 263 138, India
| | | | | | | | | | | |
Collapse
|
8
|
Adam KH, Marquardt O. Differentiation of type A, Asia1 and O foot-and-mouth disease virus variants, amplified by the same system, by sequencing of the capsid protein genes. J Virol Methods 2002; 104:117-23. [PMID: 12088821 DOI: 10.1016/s0166-0934(02)00041-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A reverse transcription-dependent polymerase chain reaction (RT-PCR) is described that amplifies the genes encoding the capsid proteins VP1-3 of at least three evolutionary lineages each of the foot-and-mouth disease (FMD) virus types A, Asia1 and O. Most of these lineages are circulating at present in Asia and Africa. The method is not only suitable to confirm suspected outbreaks of FMD, but also describes the modulation of major and minor antigenic sites in the course of an epizootic by nucleotide sequence determination of the obtained RT-PCR products. Such knowledge helps to choose suitable vaccines for disease control.
Collapse
Affiliation(s)
- K-H Adam
- Bundesforschungsanstalt für Viruskrankheiten der Tiere, Paul-Ehrlich-Strasse 28, D-72076 Tubingen, Germany
| | | |
Collapse
|