1
|
Kuwasako K, Dohmae N, Inoue M, Shirouzu M, Taguchi S, Güntert P, Séraphin B, Muto Y, Yokoyama S. Complex assembly mechanism and an RNA-binding mode of the human p14-SF3b155 spliceosomal protein complex identified by NMR solution structure and functional analyses. Proteins 2007; 71:1617-36. [DOI: 10.1002/prot.21839] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Spadaccini R, Reidt U, Dybkov O, Will C, Frank R, Stier G, Corsini L, Wahl MC, Lührmann R, Sattler M. Biochemical and NMR analyses of an SF3b155-p14-U2AF-RNA interaction network involved in branch point definition during pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2006; 12:410-25. [PMID: 16495236 PMCID: PMC1383580 DOI: 10.1261/rna.2271406] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The p14 subunit of the essential splicing factor 3b (SF3b) can be cross-linked to the branch-point adenosine of pre-mRNA introns within the spliceosome. p14 stably interacts with the SF3b subunit SF3b155, which also binds the 65-kDa subunit of U2 auxiliary splicing factor (U2AF65). We combined biochemical and NMR techniques to study the conformation of p14 either alone or complexed with SF3b155 fragments, as well as an interaction network involving p14, SF3b155, U2AF65, and U2 snRNA/pre-mRNA. p14 comprises a canonical RNA recognition motif (RRM) with an additional C-terminal helix (alphaC) and a beta hairpin insertion. SF3b155 binds to the beta-sheet surface of p14, thereby occupying the canonical RNA-binding site of the p14 RRM. The minimal region of SF3b155 interacting with p14 (i.e., residues 381-424) consists of four alpha-helices, which are partially preformed in isolation. Helices alpha2 and alpha3 (residues 401-415) constitute the core p14-binding epitope. Regions of SF3b155 binding to p14 and U2AF65 are nonoverlapping. This allows for a simultaneous interaction of SF3b155 with both proteins, which may support the stable association of U2 snRNP with the pre-mRNA. p14-RNA interactions are modulated by SF3b155 and the RNA-binding site of the p14-SF3b155 complex involves the noncanonical beta hairpin insertion of the p14 RRM, consistent with the beta-sheet surface being occupied by the helical SF3b155 peptide and p14 helix alphaC. Our data suggest that p14 lacks inherent specificity for recognizing the branch point, but that some specificity may be achieved by scaffolding interactions involving other components of SF3b.
Collapse
Affiliation(s)
- Roberta Spadaccini
- European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Guallar V, Borrelli KW. A binding mechanism in protein-nucleotide interactions: implication for U1A RNA binding. Proc Natl Acad Sci U S A 2005; 102:3954-9. [PMID: 15753311 PMCID: PMC554833 DOI: 10.1073/pnas.0500888102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a close electronic view of the protein-base interface for the N-terminal domain of the human protein U1A. Combining accurate mixed quantum mechanics/molecular mechanics techniques and protein structure prediction methods, we provide a detailed electronic structure description of the protein-RNA stacking interactions. Our analysis indicates the evolution of the protein structure optimizing the interaction between Asp-92 and the RNA bases. The results show a direct coupling of the C-terminal tail and Asp-92, providing a direct rationalization of the experimentally determined role of the C-terminal domain in RNA binding. Here, we propose a mechanism where a protein side chain, with a delocalized electronic pi system, assists in the nucleotide binding. The binding mechanism involves a short-range interaction of the side chain with the nucleotide base and an electronic long-range interaction through a sandwich-stacking motif. The structural motif of the binding mechanism is observed in similar protein-RNA interactions and in various protein-ATP-binding sites.
Collapse
Affiliation(s)
- Victor Guallar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
4
|
Leulliot N, Quevillon-Cheruel S, Graille M, van Tilbeurgh H, Leeper TC, Godin KS, Edwards TE, Sigurdsson STL, Rozenkrants N, Nagel RJ, Ares M, Varani G. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III. EMBO J 2004; 23:2468-77. [PMID: 15192703 PMCID: PMC449770 DOI: 10.1038/sj.emboj.7600260] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 05/10/2004] [Indexed: 11/09/2022] Open
Abstract
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12-14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30-40 amino acids that follow bind to AGNN-containing stem-loops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix alpha1, a key RNA-recognition element of the dsRBD.
Collapse
Affiliation(s)
- Nicolas Leulliot
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire (CNRS-UMR 8619), Université Paris-Sud, Orsay, France
| | - Sophie Quevillon-Cheruel
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire (CNRS-UMR 8619), Université Paris-Sud, Orsay, France
| | - Marc Graille
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire (CNRS-UMR 8619), Université Paris-Sud, Orsay, France
| | - Herman van Tilbeurgh
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire (CNRS-UMR 8619), Université Paris-Sud, Orsay, France
| | - Thomas C Leeper
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Thomas E Edwards
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Natasha Rozenkrants
- RNA Center, Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA, USA
| | - Roland J Nagel
- RNA Center, Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA, USA
| | - Manuel Ares
- RNA Center, Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Mitton-Fry RM, Anderson EM, Theobald DL, Glustrom LW, Wuttke DS. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J Mol Biol 2004; 338:241-55. [PMID: 15066429 DOI: 10.1016/j.jmb.2004.01.063] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/14/2004] [Accepted: 01/30/2004] [Indexed: 10/26/2022]
Abstract
The essential budding yeast telomere-binding protein Cdc13 is required for telomere replication and end protection. Cdc13 specifically binds telomeric, single-stranded DNA (ssDNA) 3' overhangs with high affinity using an OB-fold domain. We have determined the high-resolution solution structure of the Cdc13 DNA-binding domain (DBD) complexed with a cognate telomeric ssDNA. The ssDNA wraps around one entire face of the Cdc13-DBD OB-fold in an extended, irregular conformation. Recognition of the ssDNA bases occurs primarily through aromatic, basic, and hydrophobic amino acid residues, the majority of which are evolutionarily conserved among budding yeast species and contribute significantly to the energetics of binding. Contacting five of 11 ssDNA nucleotides, the large, ordered beta2-beta3 loop is crucial for complex formation and is a unique elaboration on the binding mode commonly observed in OB-fold proteins. The sequence-specific Cdc13-DBD/ssDNA complex presents a complementary counterpoint to the interactions observed in the Oxytricha nova telomere end-binding and Schizosaccharomyces pombe Pot1 complexes. Analysis of the Cdc13-DBD/ssDNA complex indicates that molecular recognition of extended single-stranded nucleic acids may proceed via a folding-type mechanism rather than resulting from specific patterns of hydrogen bonds. The structure reported here provides a foundation for understanding the mechanism by which Cdc13 recognizes GT-rich heterogeneous sequences with both unusually strong affinity and high specificity.
Collapse
Affiliation(s)
- Rachel M Mitton-Fry
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309-0215 USA
| | | | | | | | | |
Collapse
|
6
|
Johansson C, Finger LD, Trantirek L, Mueller TD, Kim S, Laird-Offringa IA, Feigon J. Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. J Mol Biol 2004; 337:799-816. [PMID: 15033352 DOI: 10.1016/j.jmb.2004.01.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 11/30/2022]
Abstract
Nucleolin is a 70 kDa multidomain protein involved in several steps of eukaryotic ribosome biogenesis. In vitro selection in combination with mutagenesis and structural analysis identified binding sites in pre-rRNA with the consensus (U/G)CCCG(A/G) in the context of a hairpin structure, the nucleolin recognition element (NRE). The central region of the protein contains four tandem RNA-binding domains (RBDs), of which the first two are responsible for the RNA-binding specificity and affinity for NREs. Here, we present the solution structure of the 28 kDa complex formed by the two N-terminal RNA-binding domains of nucleolin (RBD12) and a natural pre-rRNA target, b2NRE. The structure demonstrates that the sequence-specific recognition of the pre-rRNA NRE is achieved by intermolecular hydrogen bonds and stacking interactions involving mainly the beta-sheet surfaces of the two RBDs and the linker residues. A comparison with our previously determined NMR structure of RBD12 in complex with an in vitro selected RNA target, sNRE, shows that although the sequence-specific recognition of the loop consensus nucleotides is the same in the two complexes, they differ in several aspects. While the protein makes numerous specific contacts to the non-consensus nucleotides in the loop E motif (S-turn) in the upper part of the sNRE stem, nucleolin RBD12 contacts only consensus nucleotides in b2NRE. The absence of these upper stem contacts from the RBD12/b2NRE complex results in a much less stable complex, as demonstrated by kinetic analyses. The role of the loop E motif in high-affinity binding is supported by gel-shift analyses with a series of sNRE mutants. The less stable interaction of RBD12 with the natural RNA target is consistent with the proposed role of nucleolin as a chaperone that interacts transiently with pre-rRNA to prevent misfolding.
Collapse
Affiliation(s)
- Carina Johansson
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Guan F, Palacios D, Hussein RI, Gunderson SI. Determinants within an 18-amino-acid U1A autoregulatory domain that uncouple cooperative RNA binding, inhibition of polyadenylation, and homodimerization. Mol Cell Biol 2003; 23:3163-72. [PMID: 12697817 PMCID: PMC153202 DOI: 10.1128/mcb.23.9.3163-3172.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human U1 snRNP-specific U1A protein autoregulates its own production by binding to and inhibiting the polyadenylation of its own pre-mRNA. Previous work demonstrated that a short sequence of U1A protein is essential for autoregulation and contains three distinct activities, which are (i) cooperative binding of two U1A proteins to a 50-nucleotide region of U1A pre-mRNA called polyadenylation-inhibitory element RNA, (ii) formation of a novel homodimerization surface, and (iii) inhibition of polyadenylation by inhibition of poly(A) polymerase (PAP). In this study, we purified and analyzed 11 substitution mutant proteins, each having one or two residues in this region mutated. In 5 of the 11 mutant proteins, we found that particular amino acids associate with one activity but not another, indicating that they can be uncoupled. Surprisingly, in three mutant proteins, these activities were improved upon, suggesting that U1A autoregulation is selected for suboptimal inhibitory efficiency. The effects of these mutations on autoregulatory activity in vivo were also determined. Only U1A and U170K are known to regulate nuclear polyadenylation by PAP inhibition; thus, these results will aid in determining how widespread this type of regulation is. Our molecular dissection of the consequences of conformational changes within an RNP complex presents a powerful example to those studying more complicated pre-mRNA-regulatory systems.
Collapse
Affiliation(s)
- Fei Guan
- Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
8
|
Ramos A, Bayer P, Varani G. Determination of the structure of the RNA complex of a double-stranded RNA-binding domain from Drosophila Staufen protein. Biopolymers 2001; 52:181-96. [PMID: 11295750 DOI: 10.1002/1097-0282(1999)52:4<181::aid-bip1003>3.0.co;2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have determined using NMR the structure of the complex between the third double-stranded RNA-binding domain (dsRBD3) of Drosophila Staufen protein and a RNA stem-loop with optimal binding properties in vitro. This work was designed to understand how dsRBD proteins bind RNA and to investigate the role of Staufen dsRBDs in the localization of maternal RNAs during early embryonic development. The structure determination was challenging, because of weak, nonsequence specific binding and residual conformational flexibility at the RNA-protein interface. In order to overcome the problems originated by the weak interaction, we used both new and more traditional approaches to obtain distance and orientation information for the protein and RNA components of the complex. The resulting structure allowed the verification of aspects of RNA recognition by dsRBDs matching the information obtained by a related crystallographic study. We were also able to generate new observations that are likely to be relevant to dsRBD-RNA binding and to the physiological role of Staufen protein.
Collapse
Affiliation(s)
- A Ramos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
9
|
Allain FH, Bouvet P, Dieckmann T, Feigon J. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J 2000; 19:6870-81. [PMID: 11118222 PMCID: PMC305906 DOI: 10.1093/emboj/19.24.6870] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2000] [Revised: 10/30/2000] [Accepted: 10/31/2000] [Indexed: 11/12/2022] Open
Abstract
The structure of the 28 kDa complex of the first two RNA binding domains (RBDs) of nucleolin (RBD12) with an RNA stem-loop that includes the nucleolin recognition element UCCCGA in the loop was determined by NMR spectroscopy. The structure of nucleolin RBD12 with the nucleolin recognition element (NRE) reveals that the two RBDs bind on opposite sides of the RNA loop, forming a molecular clamp that brings the 5' and 3' ends of the recognition sequence close together and stabilizing the stem-loop. The specific interactions observed in the structure explain the sequence specificity for the NRE sequence. Binding studies of mutant proteins and analysis of conserved residues support the proposed interactions. The mode of interaction of the protein with the RNA and the location of the putative NRE sites suggest that nucleolin may function as an RNA chaperone to prevent improper folding of the nascent pre-rRNA.
Collapse
Affiliation(s)
- F H Allain
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
10
|
Shan J, Moran-Jones K, Munro TP, Kidd GJ, Winzor DJ, Hoek KS, Smith R. Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins A1 and A2. J Biol Chem 2000; 275:38286-95. [PMID: 11024030 DOI: 10.1074/jbc.m007642200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binds a 21-nucleotide myelin basic protein mRNA response element, the A2RE, and A2RE-like sequences in other localized mRNAs, and is a trans-acting factor in oligodendrocyte cytoplasmic RNA trafficking. Recombinant human hnRNPs A1 and A2 were used in a biosensor to explore interactions with A2RE and the cognate oligodeoxyribonucleotide. Both proteins have a single site that bound oligonucleotides with markedly different sequences but did not bind in the presence of heparin. Both also possess a second, specific site that bound only A2RE and was unaffected by heparin. hnRNP A2 bound A2RE in the latter site with a K(d) near 50 nm, whereas the K(d) for hnRNP A1 was above 10 microm. UV cross-linking assays led to a similar conclusion. Mutant A2RE sequences, that in earlier qualitative studies appeared not to bind hnRNP A2 or support RNA trafficking in oligodendrocytes, had dissociation constants above 5 microm for this protein. The two concatenated RNA recognition motifs (RRMs), but not the individual RRMs, mimicked the binding behavior of hnRNP A2. These data highlight the specificity of the interaction of A2RE with these hnRNPs and suggest that the sequence-specific A2RE-binding site on hnRNP A2 is formed by both RRMs acting in cis.
Collapse
Affiliation(s)
- J Shan
- Biochemistry Department, The University of Queensland, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Lilley DM, Wilson TJ. Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr Opin Chem Biol 2000; 4:507-17. [PMID: 11006537 DOI: 10.1016/s1367-5931(00)00124-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence resonance energy transfer is a spectroscopic method that provides distance information on macromolecules in solution in the range 20-80 A. It is particularly suited to the analysis of the global structure of nucleic acids because the long-range distance information provides constraints when modelling these important structures. The application of fluorescence resonance energy transfer to nucleic acid structure has seen a resurgence of interest in the past decade, which continues to increase. An especially exciting development is the recent extension to single-molecule studies.
Collapse
Affiliation(s)
- D M Lilley
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 4HN, UK.
| | | |
Collapse
|
12
|
Bayer P, Varani L, Varani G. Nuclear magnetic resonance methods to study RNA-protein complexes. Methods Enzymol 2000; 317:198-220. [PMID: 10829282 DOI: 10.1016/s0076-6879(00)17016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- P Bayer
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | | | |
Collapse
|
13
|
Abstract
The x-ray structure of the glutamine aminoacyl tRNA synthetase bound to its cognate tRNA(Gln) and ATP was reported by Steitz and co-workers in 1989, providing the first high resolution structure of a protein-RNA complex. Since then, high resolution structures have been reported for RNA complexes with five other tRNA synthetases, the elongation factor Tu, the bacteriophage MS2 coat protein, the human spliceosomal U1A and U2B"-U1A' proteins, and the HIV-1 nucleocapsid protein. Although the number of high resolution structures of protein-RNA complexes are rather small, some general themes have begun to emerge regarding the nature and mechanisms of protein-RNA recognition.
Collapse
Affiliation(s)
- R N De Guzman
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland, Baltimore 21250, USA
| | | | | |
Collapse
|
14
|
Schärpf M, Sticht H, Schweimer K, Boehm M, Hoffmann S, Rösch P. Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2397-408. [PMID: 10759866 DOI: 10.1046/j.1432-1327.2000.01251.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The solution structure of a 15-mer nutRboxB RNA hairpin complexed with the 36-mer N-terminal peptide of the N protein (N36) from bacteriophage lambda was determined by 2D and 3D homonuclear and heteronuclear magnetic resonance spectroscopy. These 36 amino acids include the arginine-rich motif of the N protein involved in transcriptional antitermination of phage lambda. Upon complex formation with boxB RNA, the synthetic N36 peptide binds tightly to the major groove of the boxB hairpin through hydrophobic and electrostatic interactions forming a bent alpha helix. Four nucleotides of the GAAAA pentaloop of the boxB RNA adopt a GNRA-like tetraloop fold in the complex. The formation of a GAAA tetraloop involves a loop-closing sheared base pair (G6-A10), base stacking of three adenines (A7, A8, and A10), and extrusion of one nucleotide (A9) from the loop, as observed previously for the complex of N(1-22) peptide and the nutLboxB RNA [Legault, P., Li, J., Mogridge, J., Kay, L.E. & Greenblatt, J. (1998) Cell 93, 289-299]. Stacking of the bases is extended by the indole-ring of Trp18 which also forms hydrophobic contacts to the side-chains of Leu24, Leu25, and Val26. Based on the structure of the complex, three mutant peptides were synthesized and investigated by CD and NMR spectroscopy in order to determine the role of particular residues for complex formation. These studies revealed very distinct amino-acid requirements at positions 3, 4, and 8, while replacement of Trp18 with tyrosine did not result in any gross structural changes.
Collapse
Affiliation(s)
- M Schärpf
- Lehrstuhl für Biopolymere der Universität Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Ramos A, Grünert S, Adams J, Micklem DR, Proctor MR, Freund S, Bycroft M, St Johnston D, Varani G. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J 2000; 19:997-1009. [PMID: 10698941 PMCID: PMC305639 DOI: 10.1093/emboj/19.5.997] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1999] [Revised: 12/21/1999] [Accepted: 01/12/2000] [Indexed: 11/14/2022] Open
Abstract
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem-loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem-loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix alpha1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix alpha1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.
Collapse
Affiliation(s)
- A Ramos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mittermaier A, Varani L, Muhandiram DR, Kay LE, Varani G. Changes in side-chain and backbone dynamics identify determinants of specificity in RNA recognition by human U1A protein. J Mol Biol 1999; 294:967-79. [PMID: 10588900 DOI: 10.1006/jmbi.1999.3311] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribonucleoprotein (RNP) domain is one of the most common eukaryotic protein domains, and is found in many proteins involved in recognition of a wide variety of RNAs. Two structures of RNA complexes of human U1A protein have revealed important aspects of RNP-RNA recognition, but have also raised intriguing questions concerning how RNP domains discriminate between different RNAs. In this work, we extend the investigation of U1A-RNA recognition by comparing the dynamics of U1A protein both free and in complex with RNA. We have also investigated the trimolecular complex between two U1A proteins and the complete polyadenylation inhibition element to study the effect of RNA-dependent protein-protein interactions on protein conformational flexibility. We report that changes in backbone dynamics upon complex formation identify regions of the protein where conformational exchange processes are quenched in the RNA-bound conformation. Furthermore, amino acids whose side-chains experience significant changes in conformational flexibility coincide with residues particularly important for the specificity of the U1A protein/RNA interaction. This study adds a new dimension to the description of the coordinated changes in structure and dynamics that are critical to define the biological specificity of U1A and other RNP proteins.
Collapse
Affiliation(s)
- A Mittermaier
- Protein Engineering Network Centers of Excellence and Departments of Medical Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
17
|
Abstract
Atomic resolution structures are now available for more than 20 complexes of proteins with specific RNAs. This review examines two main themes that appear in this set of structures. A "groove binder" class of proteins places a protein structure (alpha-helix, 310-helix, beta-ribbon, or irregular loop) in the groove of an RNA helix, recognizing both the specific sequence of bases and the shape or dimensions of the groove, which are sometimes distorted from the normal A-form. A second class of proteins uses beta-sheet surfaces to create pockets that examine single-stranded RNA bases. Some of these proteins recognize completely unstructured RNA, and in others RNA secondary structure indirectly promotes binding by constraining bases in an appropriate orientation. Thermodynamic studies have shown that binding specificity is generally a function of several factors, including base-specific hydrogen bonds, non-polar contacts, and mutual accommodation of the protein and RNA-binding surfaces. The recognition strategies and structural frameworks used by RNA binding proteins are not exotically different from those employed by DNA-binding proteins, suggesting that the two kinds of nucleic acid-binding proteins have not evolved independently.
Collapse
Affiliation(s)
- D E Draper
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Nagata T, Kanno R, Kurihara Y, Uesugi S, Imai T, Sakakibara S, Okano H, Katahira M. Structure, backbone dynamics and interactions with RNA of the C-terminal RNA-binding domain of a mouse neural RNA-binding protein, Musashi1. J Mol Biol 1999; 287:315-30. [PMID: 10080895 DOI: 10.1006/jmbi.1999.2596] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2.
Collapse
Affiliation(s)
- T Nagata
- Department of Chemistry and Biotechnology, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|