1
|
Borczak B, Szewczyk A, Domagała D, Kapusta-Duch J, Leszczyńska T, Kotuła M, Grulova D. Potential Antidiabetic, Antioxidative and Antiproliferative Properties of Functional Wheat Flour Muffins Enriched with White Clover Flowers ( Trifolium repens L.). Int J Mol Sci 2024; 25:9909. [PMID: 39337397 PMCID: PMC11432339 DOI: 10.3390/ijms25189909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the study was to evaluate the functional properties of muffins fortified with white clover flowers (Trifolium repens L.), which were added to the dough in the following amounts: (i) 0% (control); (ii) 2.5%; (iii) 5.5%; (iv) 7.5%; and (v) 10%. The organoleptic properties were assessed by a panel of consumers. Additionally, the following parameters were also tested: basic chemical composition, total polyphenols, the antioxidant activity together with antiproliferative effects on the A375 melanoma cell line, starch nutritional fractions and the in vitro glycemic index. As a result, replacing wheat flour with white clover flour significantly affected the color, aroma and taste of the muffins. The content of proteins, fats, total ash, dietary fiber, resistant starch (RS), slowly digestible starch (SDS),total polyphenols and antioxidant activity increased statistically significantly with the elevated amount of white clover flour added to the dough. At the same time, the content of free glucose (FG), rapidly available glucose (RAG) and rapidly digestible starch (RDS), the value of the in vitro glycemic index and the viability of melanoma cancer cells decreased significantly. The muffins enriched with white clover flowers might constitute an interesting proposition and extension of the existing assortment of confectionery products.
Collapse
Affiliation(s)
- Barbara Borczak
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Agnieszka Szewczyk
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Marta Kotuła
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Kraków, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Daniela Grulova
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17th November St. 1, 080 01 Presov, Slovakia
| |
Collapse
|
2
|
Qi T, Tang T, Zhou Q, Yang W, Hassan MJ, Cheng B, Nie G, Li Z, Peng Y. Optimization of Protocols for the Induction of Callus and Plant Regeneration in White Clover ( Trifolium repens L.). Int J Mol Sci 2023; 24:11260. [PMID: 37511020 PMCID: PMC10378747 DOI: 10.3390/ijms241411260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
White clover is a widely grown temperate legume forage with high nutritional value. Research on the functional genomics of white clover requires a stable and efficient transformation system. In this study, we successfully induced calluses from the cotyledons and leaves of 10 different white clover varieties. The results showed that the callus formation rate in the cotyledons did not vary significantly among the varieties, but the highest callus formation rate was observed in 'Koala' leaves. Subsequently, different concentrations of antioxidants and hormones were tested on the browning rate and differentiation ability of the calluses, respectively. The results showed that the browning rate was the lowest on MS supplemented with 20 mg L-1 AgNO3 and 25 mg L-1 VC, respectively, and the differentiation rate was highest on MS supplemented with 1 mg L-1 6-BA, 1 mg L-1 KT and 0.5 mg L-1 NAA. In addition, the transformation system for Agrobacterium tumefaciens-mediated transformation of 4-day-old leaves was optimized to some extent and obtained a positive callus rate of 8.9% using green fluorescent protein (GFP) as a marker gene. According to our data, by following this optimized protocol, the transformation efficiency could reach 2.38%. The results of this study will provide the foundation for regenerating multiple transgenic white clover from a single genetic background.
Collapse
Affiliation(s)
- Tiangang Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinyu Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiqiang Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Jia T, Tang T, Cheng B, Li Z, Peng Y. Development of two protocols for Agrobacterium-mediated transformation of white clover (Trifolium repens) via the callus system. 3 Biotech 2023; 13:150. [PMID: 37131967 PMCID: PMC10148932 DOI: 10.1007/s13205-023-03591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 04/23/2023] [Indexed: 05/04/2023] Open
Abstract
White clover (Trifolium repens) is one of the most widely cultivated livestock forage plants whose persistence is severely affected by abiotic stresses. For the white clover, efficient regeneration systems is still a great necessity. In this study, inoculating 4-day-old cotyledons into MS media fortified with 0.4 mg·L-1 6-BA and 2 mg·L-1 2,4-D significantly increased the callus induction rate. Roots and cotyledons proved to be better explants, followed by hypocotyls, leaves, and petioles for callus induction. The development of differentiated structures occurred effectively on MS supplemented with 1 mg·L-1 6-BA and 0.1 mg·L-1 NAA. To increase transformation, we investigated various factors affecting the Agrobacterium tumefaciens transformation in white clover. The optimal conditions for root-derived callus and 4-day-old cotyledons were as follows: Agrobacterium suspension density with OD600 of 0.5, 20 mg·L-1 AS, and 4 days of co-cultivation duration. Subsequently, we developed two transformation protocols: transformation after callus induction from 4-day-old roots (Protocol A) and transformation before initiation of callus from cotyledons (Protocol B). The transformation frequencies varied from 1.92 to 3.17% in Protocol A and from 2.76 to 3.47% in Protocol B. We report the possibility to regenerate multiple transgenic white clover plants from a single genetic background. Our research may also contribute to successful genetic manipulation and genome editing in white clover. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03591-2.
Collapse
Affiliation(s)
- Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
4
|
Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0015/jbcpp-2020-0015.xml. [PMID: 32776902 DOI: 10.1515/jbcpp-2020-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Trifolium repens belongs to the family Leguminosae and has been used for therapeutic purposes as traditional medicine. The plant is widely used as fodder and leafy vegetables for human uses. However, there is a lack of a detailed review of its phytochemical profile and pharmacological properties. This review presents a comprehensive overview of the phytochemical profile and biological properties of T. repens. The plant is used as antioxidants and cholinesterase inhibitors and for anti-inflammatory, antiseptic, analgesic, antirheumatic ache, and antimicrobial purposes. This review has summarized the available updated useful information about the different bioactive compounds such as simple phenols, phenolic acids, flavones, flavonols, isoflavones, pterocarpans, cyanogenic glucosides, saponins, and condensed tannins present in T. repens. The pharmacological roles of these secondary metabolites present in T. repens have been presented. It has been revealed that T. repens contain important phytochemicals, which is the potential source of health-beneficial bioactive components for food and nutraceuticals industries.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
5
|
McHale M, Eamens AL, Finnegan EJ, Waterhouse PM. A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:519-29. [PMID: 23937661 PMCID: PMC4241025 DOI: 10.1111/tpj.12306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 05/03/2023]
Abstract
It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.
Collapse
Affiliation(s)
- Marcus McHale
- University of Sydney, Waterhouse LaboratoryLvl 8 Biochemistry Bldg G08, Sydney, NSW, 2006, Australia
| | - Andrew L Eamens
- University of Sydney, Waterhouse LaboratoryLvl 8 Biochemistry Bldg G08, Sydney, NSW, 2006, Australia
- University Drive CallaghanB105, Biology Building, Callaghan, NSW, 2308, Australia
| | - E Jean Finnegan
- CSIRO Plant Industry - Black Mountain
LaboratoriesClunies Ross Street, Black Mountain, ACT, 2601, Australia
| | - Peter M Waterhouse
- University of Sydney, Waterhouse LaboratoryLvl 8 Biochemistry Bldg G08, Sydney, NSW, 2006, Australia
- * For correspondence (e-mail
)
| |
Collapse
|
6
|
Richardson KA, Maher DA, Jones CS, Bryan G. Genetic transformation of western clover (Trifolium occidentale D. E. Coombe.) as a model for functional genomics and transgene introgression in clonal pasture legume species. PLANT METHODS 2013; 9:25. [PMID: 23841995 PMCID: PMC3716983 DOI: 10.1186/1746-4811-9-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/01/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND Western clover (Trifolium occidentale) is a perennial herb with characteristics compatible for its development as an attractive model species for genomics studies relating to the forage legume, white clover (Trifolium repens). Its characteristics such as a small diploid genome, self-fertility and ancestral contribution of one of the genomes of T. repens, facilitates its use as a model for genetic analysis of plants transformed with legume or novel genes. RESULTS In this study, a reproducible transformation protocol was established following screening of T. occidentale accessions originating from England, Ireland, France, Spain and Portugal. The protocol is based upon infection of cotyledonary explants dissected from mature seed with the Agrobacterium tumefaciens strain GV3101 carrying vectors which contain the bar selection marker gene. Transformation frequencies of up to 7.5% were achieved in 9 of the 17 accessions tested. Transformed plants were verified by PCR and expression of the gusA reporter gene, while integration of the T-DNA was confirmed by Southern blot hybridisation and segregation of progeny in the T1 generation. CONCLUSIONS Development of this protocol provides a valuable contribution toward establishing T. occidentale as a model species for white clover. This presents opportunities for further improvement in white clover through the application of biotechnology.
Collapse
Affiliation(s)
- Kim A Richardson
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Dorothy A Maher
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
- Pastoral Genomics, c/o Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Chris S Jones
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
- Pastoral Genomics, c/o Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Greg Bryan
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Nguyen HC, Hoefgen R, Hesse H. Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5991-6001. [PMID: 23048130 DOI: 10.1093/jxb/ers253] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the aim of increasing the cysteine level in rice (Oryza sativa L.) and thus improving its nutritional quality, transgenic rice plants were generated expressing an Escherichia coli serine acetyltransferase isoform (EcSAT), the enzyme synthesizing O-acetylserine, the precursor of cysteine. The gene was fused to the transit peptide of the Arabidopsis Rubisco and driven by a ubiquitin promoter to target the enzyme to plastids. Twenty-two transgenic plants were examined for transgene protein expression, and five lines with a high expression level and enzymatic activity, respectively, were selected for further analysis. In these lines, the contents of cysteine and glutathione increased 2.4-fold and 2-fold, respectively. More important is the increase in free methionine and methionine incorporated into the water-soluble protein fraction in seeds. Free methionine increased in leaves up to 2.7-fold, in seeds up to 1.4-fold, and bound to seed proteins up to 4.8-fold, respectively, while the bound methionine level remained constant or even decreased in leaves. Notably, the transgenic lines exhibited higher isoleucine, leucine, and valine contents (each up to 2-fold depending on tissue, free, or bound), indicating a potential conversion of methionine via methionine γ-lyase to isoleucine. As the transgenic rice plants overexpressing EcSAT had significantly higher levels of both soluble and protein-bound methionine, isoleucine, cysteine, and glutathione in rice they may represent a model and target system for improving the nutritional quality of cereal crops.
Collapse
Affiliation(s)
- Huu Cuong Nguyen
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
8
|
Abogadallah GM, Nada RM, Malinowski R, Quick P. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. PLANTA 2011; 233:1265-76. [PMID: 21340699 DOI: 10.1007/s00425-011-1382-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/08/2011] [Indexed: 05/18/2023]
Abstract
Trifolium alexandrinum L. was transformed with the Arabidopsis HARDY gene that belongs to the stress-related AP2/ERF (APETALA2/ethylene responsive element binding factors) superfamily of transcription factors. The fresh weights of the transgenic lines L2 and L3 were improved by 42 and 55% under drought stress and by 38 and 95% under salt stress compared to the wild type, respectively. The dry weights were similarly improved. Overexpression of HARDY improved the instantaneous water use efficiency (WUE) under drought stress by reducing transpiration (E) and under salt stress by improving photosynthesis (A), through reducing Na+ accumulation in leaves, and reducing E. However, HARDY improved the growth of drought-stressed transgenic plants as compared to the wild type by delaying water depletion from soil and preventing rapid decline in A. L2 and L3 had thicker stems and in case of L3, more xylem rows per vascular bundle, which may have made L3 more resistant to lodging in the field. Field performance of L2 and L3 under combined drought and salt stress was significantly better than that of the wild type in terms of fresh and dry weights (40%, 46% and 31%, 40%, respectively). The results provide further evidence for the efficiency of overexpression of a single gene in improving tolerance to abiotic stress under field conditions.
Collapse
Affiliation(s)
- Gaber M Abogadallah
- Department of Botany, Faculty of Science, Mansoura University, Damietta Branch, New Damietta 34517, Egypt.
| | | | | | | |
Collapse
|
9
|
Genetic Engineering of Seed Storage Proteins. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
10
|
Amira G, Ifat M, Tal A, Hana B, Shmuel G, Rachel A. Soluble methionine enhances accumulation of a 15 kDa zein, a methionine-rich storage protein, in transgenic alfalfa but not in transgenic tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2443-52. [PMID: 16061510 DOI: 10.1093/jxb/eri237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the general aim of elevating the content of the essential amino acid methionine in vegetative tissues of plants, alfalfa (Medicago sativa L.) and tobacco plants, as well as BY2 tobacco suspension cells, were transformed with a beta-zein::3HA gene under the 35S promoter of cauliflower mosaic virus encoding a rumen-stable methionine-rich storage protein of 15 kDa zein. To examine whether soluble methionine content limited the accumulation of the 15 kDa zein::3HA, methionine was first added to the growth medium of the different transgenic plants and the level of the alien protein was determined. Results demonstrated that the added methionine enhanced the accumulation of the 15 kDa zein::3HA in transgenic alfalfa and tobacco BY2 cells, but not in whole transgenic tobacco plants. Next, the endogenous levels of methionine were elevated in the transgenic tobacco and alfalfa plants by crossing them with plants expressing the Arabidopsis cystathionine gamma-synthase (AtCGS) having significantly higher levels of soluble methionine in their leaves. Compared with plants expressing only the 15 kDa zein::3HA, transgenic alfalfa co-expressing both alien genes showed significantly enhanced levels of this protein concurrently with a reduction in the soluble methionine content, thus implying that soluble methionine was incorporated into the 15 kDa zein::3HA. Similar phenomena also occurred in tobacco, but were considerably less pronounced. The results demonstrate that the accumulation of the 15 kDa zein::3HA is regulated in a species-specific manner and that soluble methionine plays a major role in the accumulation of the 15 kDa zein in some plant species but less so in others.
Collapse
Affiliation(s)
- Golan Amira
- Plant Science Laboratory, Migal-Galilee Technology Center, PO Box 831, Kiryat Shmona, 11016, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Avraham T, Badani H, Galili S, Amir R. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine gamma-synthase gene. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:71-9. [PMID: 17168900 DOI: 10.1111/j.1467-7652.2004.00102.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the aim of increasing the methionine level in alfalfa (Medicago sativa L.) and thus improving its nutritional quality, we produced transgenic alfalfa plants that expressed the Arabidopsis cystathionine gamma-synthase (AtCGS), the enzyme that controls the synthesis of the first intermediate metabolite in the methionine pathway. The AtCGS cDNA was driven by the Arabidopsis rubisco small subunit promoter to obtain expression in leaves. Thirty transgenic plants were examined for the transgene protein expression, and four lines with a high expression level were selected for further work. In these lines, the contents of methionine, S-methylmethionine (SMM), and methionine incorporated into the water-soluble protein fraction increased up to 32-fold, 19-fold, and 2.2-fold, respectively, compared with that in wild-type plants. Notably, in these four transgenic lines, the levels of free cysteine (the sulphur donor for methionine synthesis), glutathione (the cysteine storage and transport form), and protein-bound cysteine increased up to 2.6-fold, 5.5-fold, and 2.3-fold, respectively, relative to that in wild-type plants. As the transgenic alfalfa plants over-expressing AtCGS had significantly higher levels of both soluble and protein-bound methionine and cysteine, they may represent a model and target system for improving the nutritional quality of forage crops.
Collapse
Affiliation(s)
- Tal Avraham
- Plant Science Laboratory, Migal-Galilee Technology Center, PO Box 831, Kiryat Shmona 11016, Israel.
| | | | | | | |
Collapse
|
12
|
Godfree RC, Woods MJ, Young AG, Burdon JJ, Higgins TJV. Growth, fecundity and competitive ability of transgenic Trifolium subterraneum subsp. subterraneum cv. Leura expressing a sunflower seed albumin gene. Hereditas 2004; 140:229-44. [PMID: 15198714 DOI: 10.1111/j.1601-5223.2004.01765.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ecological risk assessment is an important step in the production and commercialisation of transgenic plants. To date, however, most risk assessment studies have been performed on crop plants, and few have considered the ecological consequences associated with genetic modification of pasture species. In this study we compared the growth, yield, population dynamics and competitive ability of transgenic Trifolium subterraneum subsp. subterraneum cv. Leura (subclover) expressing a nutritive sunflower seed albumin (ssa) gene with the equivalent non-transgenic commercial line in a glasshouse competition trial. Plants were grown in low-fertility soil typical of unimproved native southeastern Australian grasslands. We measured survivorship, seed production rate, seed germination rate, seed weight, dry weight yield and the intrinsic rate of population increase (lambda) of plants grown in mixtures and monocultures over a range of densities (250 to 2000 plants m(-2)), and also determined intragenotypic and intergenotypic competition coefficients for each line. There were no significant differences between transgenic and non-transgenic plants in any of the measured variables except survivorship; transgenic plants had a significantly lower survival rate than non-transgenic plants when grown at high densities (p<0.01). However, density-dependent effects were observed for all measured variables, and in all models plant density affected the response variables more than the presence of the transgene. Based on these results, we conclude that the ssa gene construct appears to confer no advantage to transgenic T. s. subterraneum cv. Leura growing in mixed or pure swards under the fertility and density regimes examined in the trial. Our data also suggest that transgenic subterranean clover expressing the ssa gene is unlikely to exhibit a competitive advantage over associated non-transgenic commercial cultivars when grown in dense swards in low-fertility pastures.
Collapse
|
13
|
Hagan ND, Spencer D, Moore AE, Higgins TJV. Changes in methylation during progressive transcriptional silencing in transgenic subterranean clover. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:479-90. [PMID: 17134405 DOI: 10.1046/j.1467-7652.2003.00043.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A transgenic line of subterranean clover (Trifolium subterraneum) containing a gene for a sulphur-rich sunflower seed albumin (ssa gene) and a gene conferring tolerance to the herbicide phosphinothricin (bar gene) was previously shown to stably express these genes as far as the T3 generation. In subsequent generations there was a progressive decline in the level of expression of both of these genes such that, by the T7 generation, the plants were almost completely susceptible to the herbicide and the mean level of sunflower seed albumin was reduced to 10-30% of the level in the T2 and T3 generations. The decline in SSA protein correlated closely with a decline in the level of ssa RNA. In vitro transcription experiments with nuclei isolated from plants of the early and late generations showed that the reduced mRNA level was associated with a reduced level of transcription of the ssa transgene. Transcription of the bar transgene was also reduced in the late generations. Bisulphite sequencing analysis showed that the decline in expression of the ssa gene between T3 and subsequent generations correlated closely with increased CpG methylation in the promoter, but not in the coding region. Analysis of the bar gene promoter showed that high levels of CpG methylation preceded the first detectable decline in expression of the bar gene by one generation, suggesting that methylation was not the direct cause of transgene silencing in these plants.
Collapse
Affiliation(s)
- Nicholas D Hagan
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | | | | | | |
Collapse
|
14
|
Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA. The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. PLANTA 2003; 216:1003-12. [PMID: 12687368 DOI: 10.1007/s00425-002-0953-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Accepted: 11/11/2002] [Indexed: 05/19/2023]
Abstract
Transgenic plants are increasingly used as production platforms for various proteins, yet protein expression levels in the range of the most abundant plant protein, ribulose-1,5-bisphosphate carboxylase have not yet been achieved by nuclear transformation. Suitable gene regulatory 5' and 3' elements are crucial to obtain adequate expression. In this study an abundantly transcribed member (rbcS1) of the ribulose-1,5-bisphosphate carboxylase small-subunit gene family of chrysanthemum (Chrysanthemum morifolium Ramat.) was cloned. The promoter of rbcS1 was found to be homologous to promoters of highly expressed rbcS gene members of the plant families Asteraceae, Fabaceae and Solanaceae. The regulatory 5' and 3' non-translated regions of rbcS1 were engineered to drive heterologous expression of various genes. In chrysanthemum, the homologous rbcS1 cassette resulted in a beta-glucuronidase (gusA) accumulation of, at maximum, 0.88% of total soluble protein (population mean 0.17%). In tobacco (Nicotiana tabacum L.), the gusA expression reached 10% of total soluble protein. The population mean of 2.7% was found to be 7- to 8-fold higher than for the commonly used cauliflower mosaic virus (CaMV) 35S promoter (population mean 0.34%). RbcS1-driven expression of sea anemone equistatin in potato (Solanum tuberosum L.), and potato cystatin in tomato (Lycopersicon esculentum Mill.) yielded maximum levels of 3-7% of total soluble protein. The results demonstrate, that the compact 2-kb rbcS1 expression cassette provides a novel nuclear transformation vector that generates plants with expression levels of up to 10% of total protein.
Collapse
Affiliation(s)
- N S Outchkourov
- Plant Research International, PO Box 16, 6700AA, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|