1
|
Souza GM, Kretschmer R, Toma GA, de Oliveira AM, Deon GA, Setti PG, Zeni Dos Santos R, Goes CAG, Del Valle Garnero A, Gunski RJ, de Oliveira EHC, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Satellitome analysis on the pale-breasted thrush Turdus leucomelas (Passeriformes; Turdidae) uncovers the putative co-evolution of sex chromosomes and satellite DNAs. Sci Rep 2024; 14:20656. [PMID: 39232109 PMCID: PMC11375038 DOI: 10.1038/s41598-024-71635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Collapse
Affiliation(s)
- Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | | | - Ricardo José Gunski
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97307-020, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller Universität, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Torgasheva A, Malinovskaya L, Zadesenets KS, Slobodchikova A, Shnaider E, Rubtsov N, Borodin P. Highly Conservative Pattern of Sex Chromosome Synapsis and Recombination in Neognathae Birds. Genes (Basel) 2021; 12:1358. [PMID: 34573341 PMCID: PMC8465153 DOI: 10.3390/genes12091358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023] Open
Abstract
We analyzed the synapsis and recombination between Z and W chromosomes in the oocytes of nine neognath species: domestic chicken Gallus gallus domesticus, grey goose Anser anser, black tern Chlidonias niger, common tern Sterna hirundo, pale martin Riparia diluta, barn swallow Hirundo rustica, European pied flycatcher Ficedula hypoleuca, great tit Parus major and white wagtail Motacilla alba using immunolocalization of SYCP3, the main protein of the lateral elements of the synaptonemal complex, and MLH1, the mismatch repair protein marking mature recombination nodules. In all species examined, homologous synapsis occurs in a short region of variable size at the ends of Z and W chromosomes, where a single recombination nodule is located. The remaining parts of the sex chromosomes undergo synaptic adjustment and synapse non-homologously. In 25% of ZW bivalents of white wagtail, synapsis and recombination also occur at the secondary pairing region, which probably resulted from autosome-sex chromosome translocation. Using FISH with a paint probe specific to the germline-restricted chromosome (GRC) of the pale martin on the oocytes of the pale martin, barn swallow and great tit, we showed that both maternally inherited songbird chromosomes (GRC and W) share common sequences.
Collapse
Affiliation(s)
- Anna Torgasheva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Lyubov Malinovskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Kira S. Zadesenets
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
| | - Anastasia Slobodchikova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena Shnaider
- Bird of Prey Rehabilitation Centre, 630090 Novosibirsk, Russia;
| | - Nikolai Rubtsov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Wang ZJ, Chen GJ, Zhang GJ, Zhou Q. Dynamic evolution of transposable elements, demographic history, and gene content of paleognathous birds. Zool Res 2021; 42:51-61. [PMID: 33124220 PMCID: PMC7840455 DOI: 10.24272/j.issn.2095-8137.2020.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Palaeognathae includes ratite and tinamou species that are important for understanding early avian evolution. Here, we analyzed the whole-genome sequences of 15 paleognathous species to infer their demographic histories, which are presently unknown. We found that most species showed a reduction of population size since the beginning of the last glacial period, except for those species distributed in Australasia and in the far south of South America. Different degrees of contraction and expansion of transposable elements (TE) have shaped the paleognathous genome architecture, with a higher transposon removal rate in tinamous than in ratites. One repeat family, AviRTE, likely underwent horizontal transfer from tropical parasites to the ancestor of little and undulated tinamous about 30 million years ago. Our analysis of gene families identified rapid turnover of immune and reproduction-related genes but found no evidence of gene family changes underlying the convergent evolution of flightlessness among ratites. We also found that mitochondrial genes have experienced a faster evolutionary rate in tinamous than in ratites, with the former also showing more degenerated W chromosomes. This result can be explained by the Hill-Robertson interference affecting genetically linked W chromosomes and mitochondria. Overall, we reconstructed the evolutionary history of the Palaeognathae populations, genes, and TEs. Our findings of co-evolution between mitochondria and W chromosomes highlight the key difference in genome evolution between species with ZW sex chromosomes and those with XY sex chromosomes.
Collapse
Affiliation(s)
- Zong-Ji Wang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.,MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong 518083, China
| | - Guang-Ji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong 518083, China
| | - Guo-Jie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria.,Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail:
| |
Collapse
|
4
|
Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. Evolutionary Dynamics of Sex Chromosomes of Paleognathous Birds. Genome Biol Evol 2020; 11:2376-2390. [PMID: 31329234 PMCID: PMC6735826 DOI: 10.1093/gbe/evz154] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Standard models of sex chromosome evolution propose that recombination suppression leads to the degeneration of the heterogametic chromosome, as is seen for the Y chromosome in mammals and the W chromosome in most birds. Unlike other birds, paleognaths (ratites and tinamous) possess large nondegenerate regions on their sex chromosomes (PARs or pseudoautosomal regions). It remains unclear why these large PARs are retained over >100 Myr, and how this retention impacts the evolution of sex chromosomes within this system. To address this puzzle, we analyzed Z chromosome evolution and gene expression across 12 paleognaths, several of whose genomes have recently been sequenced. We confirm at the genomic level that most paleognaths retain large PARs. As in other birds, we find that all paleognaths have incomplete dosage compensation on the regions of the Z chromosome homologous to degenerated portions of the W (differentiated regions), but we find no evidence for enrichments of male-biased genes in PARs. We find limited evidence for increased evolutionary rates (faster-Z) either across the chromosome or in differentiated regions for most paleognaths with large PARs, but do recover signals of faster-Z evolution in tinamou species with mostly degenerated W chromosomes, similar to the pattern seen in neognaths. Unexpectedly, in some species, PAR-linked genes evolve faster on average than genes on autosomes, suggested by diverse genomic features to be due to reduced efficacy of selection in paleognath PARs. Our analysis shows that paleognath Z chromosomes are atypical at the genomic level, but the evolutionary forces maintaining largely homomorphic sex chromosomes in these species remain elusive.
Collapse
Affiliation(s)
- Luohao Xu
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Timothy B Sackton
- Informatics Group, Division of Science, Harvard University
- Corresponding author: E-mail:
| |
Collapse
|
5
|
Lappin FM, Medert CM, Hawkins KK, Mardonovich S, Wu M, Moore RC. A polymorphic pseudoautosomal boundary in the Carica papaya sex chromosomes. Mol Genet Genomics 2015; 290:1511-22. [DOI: 10.1007/s00438-015-1000-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
|
6
|
Yazdi HP, Ellegren H. Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites. Mol Biol Evol 2014; 31:1444-1453. [DOI: 10.1093/molbev/msu101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
7
|
Ishijima J, Uno Y, Nishida C, Matsuda Y. Genomic structures of the kW1 loci on the Z and W chromosomes in ratite birds: structural changes at an early stage of W chromosome differentiation. Cytogenet Genome Res 2014; 142:255-67. [PMID: 24820528 DOI: 10.1159/000362479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
The W chromosome of ratite birds shows minimal morphological differentiation and retains homology of genetic linkage and gene order with a substantial stretch of the Z chromosome; however, the molecular structure in the differentiated region is still not well known. The kW1 sequence was isolated from the kiwi as a W-specific DNA marker for PCR-based molecular sexing of ratite birds. In ratite W chromosomes, this sequence commonly contains a ∼200-bp deletion. To characterize the very early event of avian sex chromosome differentiation, we performed molecular cytogenetic analyses of kW1 and its flanking sequences in paleognathous and neognathous birds and reptiles. Female-specific repeats were found in the kW1-flanking sequence of the cassowary (Casuarius casuarius), and the repeats have been amplified in the pericentromeric region of the W chromosomes of ratites, which may have resulted from the cessation of meiotic recombination between the Z and W chromosomes at an early stage of sex chromosome differentiation. The presence of the kW1 sequence in neognathous birds and a crocodilian species suggests that the kW1 sequence was present in the ancestral genome of Archosauria; however, it disappeared in other reptilian taxa and several lineages of neognathous birds.
Collapse
Affiliation(s)
- Junko Ishijima
- Laboratory of Animal Cytogenetics, Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
8
|
A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res 2013; 21:137-47. [DOI: 10.1007/s10577-013-9343-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
|
9
|
Adolfsson S, Ellegren H. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Mol Biol Evol 2013; 30:806-10. [PMID: 23329687 PMCID: PMC3603317 DOI: 10.1093/molbev/mst009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sex chromosome evolution is usually seen as a process that, once initiated, will inevitably progress toward an advanced stage of degeneration of the nonrecombining chromosome. However, despite evidence that avian sex chromosome evolution was initiated >100 Ma, ratite birds have been trapped in an arrested stage of sex chromosome divergence. We performed RNA sequencing of several tissues from male and female ostriches and assembled the transcriptome de novo. A total of 315 Z-linked genes fell into two categories: those that have equal expression level in the two sexes (for which Z–W recombination still occurs) and those that have a 2-fold excess of male expression (for which Z–W recombination has ceased). We suggest that failure to evolve dosage compensation has constrained sex chromosome divergence in this basal avian lineage. Our results indicate that dosage compensation is a prerequisite for, not only a consequence of, sex chromosome evolution.
Collapse
Affiliation(s)
- Sofia Adolfsson
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
10
|
Moghadam HK, Pointer MA, Wright AE, Berlin S, Mank JE. W chromosome expression responds to female-specific selection. Proc Natl Acad Sci U S A 2012; 109:8207-11. [PMID: 22570496 PMCID: PMC3361381 DOI: 10.1073/pnas.1202721109] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The W chromosome is predicted to be subject to strong female-specific selection stemming from its female-limited inheritance and therefore should play an important role in female fitness traits. However, the overall importance of directional selection in shaping the W chromosome is unknown because of the powerful degradative forces that act to decay the nonrecombining sections of the genome. Here we greatly expand the number of known W-linked genes and assess the expression of the W chromosome after >100 generations of different female-specific selection regimens in different breeds of chicken and in the wild ancestor, the Red Jungle Fowl. Our results indicate that female-specific selection has a significant effect on W chromosome gene-expression patterns, with a strong convergent pattern of up-regulation associated with increased female-specific selection. Many of the transcriptional changes in the female-selected breeds are the product of positive selection, suggesting that selection is an important force in shaping the evolution of gene expression on the W chromosome, a finding consistent with both the importance of the W chromosome in female fertility and the haploid nature of the W. Taken together, these data provide evidence for the importance of the sex-limited chromosome in a female heterogametic species and show that sex-specific selection can act to preserve sex-limited chromosomes from degrading forces.
Collapse
Affiliation(s)
- Hooman K. Moghadam
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Marie A. Pointer
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Alison E. Wright
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; and
| | - Sofia Berlin
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish Agricultural University, Uppsala SE 750 07, Sweden
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; and
| |
Collapse
|
11
|
Suh A, Kriegs JO, Brosius J, Schmitz J. Retroposon Insertions and the Chronology of Avian Sex Chromosome Evolution. Mol Biol Evol 2011; 28:2993-7. [PMID: 21633113 DOI: 10.1093/molbev/msr147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
12
|
Pigozzi MI. Diverse stages of sex-chromosome differentiation in tinamid birds: evidence from crossover analysis in Eudromia elegans and Crypturellus tataupa. Genetica 2011; 139:771-7. [PMID: 21567220 DOI: 10.1007/s10709-011-9581-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 04/30/2011] [Indexed: 01/10/2023]
Abstract
All extant birds share the same sex-chromosome system: ZZ males and ZW females with striking differences in the stages of sex-chromosome differentiation between the primitive palaeognathus ratites and the large majority of avian species grouped within neognaths. Evolutionarily close to ratites is the neotropical order Tinamiformes that has been scarcely explored regarding their ZW pair morphology and constitution. Tinamous, when compared to ratites, constitute a large group among Palaeognathae, therefore, exploring the extent of homology between the Z and W chromosomes in this group might reveal key features on the evolution of the avian sex chromosomes. We mapped MLH1 foci that are crossover markers on pachytene bivalents to determine the size and localization of the homologous region shared by the Z and W chromosomes in two tinamous: Eudromia elegans and Crypturellus tataupa. We found that the homologous (pseudoautosomal) region differ significantly in size between these two species. They both have a single recombination event on the long arm of the acrocentric Z and W chromosomes. However, in E. elegans the pseudoautosomal region occupies one-fourth of the W chromosome, while in C. tataupa it is restricted to the tip of the long arm of the W. The W chromosomes in these two species differ in their heterochromatin content: in E. elegans it shows a terminal euchromatic segment and in C. tataupa is completely heterochromatic. These results show that tinamous have ZW pairs with more diversified stages of differentiation compared to ratites. Finally, the idea that the avian proto-sex chromosomes started to diverge from the end of the long arm towards the centromere of an acrocentric pair is discussed.
Collapse
Affiliation(s)
- María Inés Pigozzi
- Facultad de Medicina, Instituto de Investigaciones en Reproducción, Paraguay 2155 piso 10, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
13
|
Sex chromosome evolution in amniotes: applications for bacterial artificial chromosome libraries. J Biomed Biotechnol 2010; 2011:132975. [PMID: 20981143 PMCID: PMC2957134 DOI: 10.1155/2011/132975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries.
Collapse
|
14
|
Janes DE, Ezaz T, Marshall Graves JA, Edwards SV. Recombination and nucleotide diversity in the sex chromosomal pseudoautosomal region of the emu, Dromaius novaehollandiae. J Hered 2008; 100:125-36. [PMID: 18775880 DOI: 10.1093/jhered/esn065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudoautosomal regions (PARs) shared by avian Z and W sex chromosomes are typically small homologous regions within which recombination still occurs and are hypothesized to share the properties of autosomes. We capitalized on the unusual structure of the sex chromosomes of emus, Dromaius novaehollandiae, which consist almost entirely of PAR shared by both sex chromosomes, to test this hypothesis. We compared recombination, linkage disequilibrium (LD), GC content, and nucleotide diversity between pseudoautosomal and autosomal loci derived from 11 emu bacterial artificial chromosome (BAC) clones that were mapped to chromosomes by fluorescent in situ hybridization. Nucleotide diversity (pi = 4N(e)mu) was not significantly lower in pseudoautosomal loci (14 loci, 1.9 +/- 2.4 x 10(-3)) than autosomal loci (8 loci, 4.2 +/- 6.1 x 10(-3)). By contrast, recombination per site within BAC-end sequences (rho = 4Nc) (pseudoautosomal, 3.9 +/- 6.9 x 10(-2); autosomal, 2.3 +/- 3.7 x 10(-2)) was higher and average LD (D') (pseudoautosomal, 4.2 +/- 0.2 x 10(-1); autosomal, 4.7 +/- 0.5 x 10(-1)) slightly lower in pseudoautosomal sequences. We also report evidence of deviation from a simple neutral model in the PAR and in autosomal loci, possibly caused by departures from demographic equilibrium, such as population growth. This study provides a snapshot of the population genetics of avian sex chromosomes at an early stage of differentiation.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
15
|
Organ CL, Moreno RG, Edwards SV. Three tiers of genome evolution in reptiles. Integr Comp Biol 2008; 48:494-504. [PMID: 21669810 DOI: 10.1093/icb/icn046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Characterization of reptilian genomes is essential for understanding the overall diversity and evolution of amniote genomes, because reptiles, which include birds, constitute a major fraction of the amniote evolutionary tree. To better understand the evolution and diversity of genomic characteristics in Reptilia, we conducted comparative analyses of online sequence data from Alligator mississippiensis (alligator) and Sphenodon punctatus (tuatara) as well as genome size and karyological data from a wide range of reptilian species. At the whole-genome and chromosomal tiers of organization, we find that reptilian genome size distribution is consistent with a model of continuous gradual evolution while genomic compartmentalization, as manifested in the number of microchromosomes and macrochromosomes, appears to have undergone early rapid change. At the sequence level, the third genomic tier, we find that exon size in Alligator is distributed in a pattern matching that of exons in Gallus (chicken), especially in the 101-200 bp size class. A small spike in the fraction of exons in the 301 bp-1 kb size class is also observed for Alligator, but more so for Sphenodon. For introns, we find that members of Reptilia have a larger fraction of introns within the 101 bp-2 kb size class and a lower fraction of introns within the 5-30 kb size class than do mammals. These findings suggest that the mode of reptilian genome evolution varies across three hierarchical levels of the genome, a pattern consistent with a mosaic model of genomic evolution.
Collapse
Affiliation(s)
- Chris L Organ
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
16
|
Mank JE, Ellegren H. Parallel divergence and degradation of the avian W sex chromosome. Trends Ecol Evol 2007; 22:389-91. [PMID: 17573147 DOI: 10.1016/j.tree.2007.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/27/2007] [Accepted: 05/25/2007] [Indexed: 11/17/2022]
Abstract
Sex chromosomes are ubiquitous in birds but our understanding of how they originated and evolved has remained incomplete. Recent work by Tsuda et al. on tinamou and ratite birds suggests that, although all bird sex chromosomes evolved from the same pair of autosomes, the Z and W sex chromosomes have diverged from one another several times independently. This parallel evolution of the avian W presents a means for comparison in studies of sex chromosome evolution, which could help us understand more about the general forces that shape the development of all types of sex chromosome.
Collapse
Affiliation(s)
- Judith E Mank
- Uppsala University, Evolutionary Biology Centre, Department of Evolutionary Biology, Norbyvägen 18D, SE 752 36, Uppsala, Sweden
| | | |
Collapse
|
17
|
Nishida-Umehara C, Tsuda Y, Ishijima J, Ando J, Fujiwara A, Matsuda Y, Griffin DK. The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 2007; 15:721-34. [PMID: 17605112 DOI: 10.1007/s10577-007-1157-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/28/2007] [Accepted: 04/28/2007] [Indexed: 11/25/2022]
Abstract
Palaeognathous birds (Struthioniformes and Tinamiformes) have morphologically conserved karyotypes and less differentiated ZW sex chromosomes. To delineate interspecific chromosome orthologies in palaeognathous birds we conducted comparative chromosome painting with chicken (Gallus gallus, GGA) chromosome 1-9 and Z chromosome paints (GGA1-9 and GGAZ) for emu, double-wattled cassowary, ostrich, greater rhea, lesser rhea and elegant crested tinamou. All six species showed the same painting patterns: each probe was hybridized to a single pair of chromosomes with the exception that the GGA4 was hybridized to the fourth largest chromosome and a single pair of microchromosomes. The GGAZ was also hybridized to the entire region of the W chromosome, indicating that extensive homology remains between the Z and W chromosomes on the molecular level. Comparative FISH mapping of four Z- and/or W-linked markers, the ACO1/IREBP, ZOV3 and CHD1 genes and the EE0.6 sequence, revealed the presence of a small deletion in the proximal region of the long arm of the W chromosome in greater rhea and lesser rhea. These results suggest that the karyotypes and sex chromosomes of palaeognathous birds are highly conserved not only morphologically, but also at the molecular level; moreover, palaeognathous birds appear to retain the ancestral lineage of avian karyotypes.
Collapse
Affiliation(s)
- Chizuko Nishida-Umehara
- Laboratory of Animal Cytogenetics, Division of Genome Dynamics, Creative Research Initiative Sousei, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Mank JE, Axelsson E, Ellegren H. Fast-X on the Z: rapid evolution of sex-linked genes in birds. Genes Dev 2007; 17:618-24. [PMID: 17416747 PMCID: PMC1855182 DOI: 10.1101/gr.6031907] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/06/2007] [Indexed: 01/08/2023]
Abstract
Theoretical work predicts natural selection to be more efficient in the fixation of beneficial mutations in X-linked genes than in autosomal genes. This "fast-X effect" should be evident by an increased ratio of nonsynonymous to synonymous substitutions (dN/dS) for sex-linked genes; however, recent studies have produced mixed support for this expectation. To make an independent test of the idea of fast-X evolution, we focused on birds, which have female heterogamety (males ZZ, females ZW), where analogous arguments would predict a fast-Z effect. We aligned 2.8 Mb of orthologous protein-coding sequence of zebra finch and chicken from 172 Z-linked and 4848 autosomal genes. Zebra finch data were in the form of EST sequences from brain cDNA libraries, while chicken genes were from the draft genome sequence. The dN/dS ratio was significantly higher for Z-linked (0.110) than for all autosomal genes (0.085; P=0.002), as well as for genes linked to similarly sized autosomes 1-10 (0.0948; P=0.04). This pattern of fast-Z was evident even after we accounted for the nonrandom distribution of male-biased genes. We also examined the nature of standing variation in the chicken protein-coding regions. The ratio of nonsynonymous to synonymous polymorphism (pN/pS) did not differ significantly between genes on the Z chromosome (0.104) and on the autosomes (0.0908). In conjunction, these results suggest that evolution proceeds more quickly on the Z chromosome, where hemizygous exposure of beneficial nondominant mutations increases the rate of fixation.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE 752 36 Uppsala, Sweden
| | - Erik Axelsson
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE 752 36 Uppsala, Sweden
| |
Collapse
|
19
|
Tsuda Y, Nishida-Umehara C, Ishijima J, Yamada K, Matsuda Y. Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 2007; 116:159-73. [PMID: 17219176 DOI: 10.1007/s00412-006-0088-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/07/2006] [Accepted: 10/29/2006] [Indexed: 11/26/2022]
Abstract
To clarify the process of avian sex chromosome differentiation in palaeognathous birds, we performed molecular and cytogenetic characterization of W chromosome-specific repetitive DNA sequences for elegant crested tinamou (Eudromia elegans, Tinamiformes) and constructed comparative cytogenetic maps of the Z and W chromosomes with nine chicken Z-linked gene homologues for E. elegans and ostrich (Struthio camelus, Struthioniformes). A novel family of W-specific repetitive sequences isolated from E. elegans was found to be composed of guanine- and cytosine-rich 293-bp elements that were tandemly arrayed in the genome as satellite DNA. No nucleotide sequence homologies were found for the Struthioniformes and neognathous birds. The comparative cytogenetic maps of the Z and W chromosomes of E. elegans and S. camelus revealed that there are partial deletions in the proximal regions of the W chromosomes in the two species, and the W chromosome is more differentiated in E. elegans than in S. camelus. These results suggest that a deletion firstly occurred in the proximal region close to the centromere of the acrocentric proto-W chromosome and advanced toward the distal region. In E. elegans, the W-specific repeated sequence elements were amplified site-specifically after deletion of a large part of the W chromosome occurred.
Collapse
Affiliation(s)
- Yayoi Tsuda
- Laboratory of Cytogenetics, Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
20
|
Yamada K, Nishida-Umehara C, Ishijima J, Murakami T, Shibusawa M, Tsuchiya K, Tsudzuki M, Matsuda Y. A novel family of repetitive DNA sequences amplified site-specifically on the W chromosomes in Neognathous birds. Chromosome Res 2006; 14:613-27. [PMID: 16964568 DOI: 10.1007/s10577-006-1071-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 11/29/2022]
Abstract
A novel family of repetitive DNA sequences was molecularly cloned from ApaI-digested genomic DNA of two Galliformes species, Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris), and characterized by chromosome in-situ hybridization and filter hybridization. Both the repeated sequence elements produced intensely painted signals on the W chromosomes, whereas they weakly hybridized to whole chromosomal regions as interspersed-type repetitive sequences. The repeated elements of the two species had high similarity of nucleotide sequences, and cross-hybridized to chromosomes of two other Galliformes species, chicken (Gallus gallus) and blue-breasted quail (Coturnix chinensis). The nucleotide sequences were conserved in three other orders of Neognathous birds, the Strigiformes, Gruiformes and Falconiformes, but not in Palaeognathous birds, the Struthioniformes and Tinamiformes, indicating that the repeated sequence elements were amplified on the W chromosomes in the lineage of Neognathous birds after the common ancestor diverged into the Palaeognathae and Neognathae. They are components of the W heterochromatin in Neognathous birds, and a good molecular cytogenetic marker for estimating the phylogenetic relationships and for clarifying the origin of the sex chromosome heterochromatin and the process of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Laboratory of Animal Cytogenetics, Division of Genome Dynamics, Creative Research Initiative Sousei, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pigozzi MI, Solari AJ. Meiotic recombination in the ZW pair of a tinamid bird shows a differential pattern compared with neognaths. Genome 2005; 48:286-90. [PMID: 15838551 DOI: 10.1139/g04-117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tinamid bird Nothura maculosa, along with other species of the order Tinamiformes and all of the existent ratites, form the infraclass Paleognathae, the most primitive living birds. Previous work has shown that in all studied Neognathae, the ZW pair shows strictly localized recombination in a very short pseudoautosomal region, while in paleognath birds, the ZW pairs have mostly free recombination. The present observations show that the ZW pair of N. maculosa has a recombination pattern departing from both neognaths and other Paleognath birds, as there is a single crossover but occurring at random points along a significant part of the long arm of the W chromosome. This recombination pattern agrees with the presence of intercalary and terminal heterochromatin in the W chromosome, suggesting an exceptional, additional step of recombination suppression.
Collapse
Affiliation(s)
- M I Pigozzi
- CIR, Facultad de Medicina, Buenos Aires, Argentina
| | | |
Collapse
|
22
|
GORELICK ROOT. Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00244.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Reeve HK, Pfennig DW. Genetic biases for showy males: are some genetic systems especially conducive to sexual selection? Proc Natl Acad Sci U S A 2003; 100:1089-94. [PMID: 12540829 PMCID: PMC298731 DOI: 10.1073/pnas.0337427100] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male secondary sexual characters (conspicuous ornaments, signals, colors) are among nature's most striking features. Yet, it is unclear why certain groups of organisms are more likely than others to evolve these traits. One explanation for such taxonomic biases is that some genetic systems may be especially conducive to sexual selection. Here, we present theory and simulation results demonstrating that rare alleles encoding either male ornaments or female preferences for those ornaments are better protected against random loss in species with ZZZW or ZZZO sex chromosome systems (male homogamety) than in species with XXXY or XXXO systems (male heterogamety). Moreover, this protection is much stronger in diploid than haplodiploid species. We also present empirical data showing that male secondary sexual characters are better developed in diploid than haplodiploid species and in diploid species with male homogamety than in those with male heterogamety. Thus, taxonomic biases for showy males may stem from differences in sex chromosome systems.
Collapse
Affiliation(s)
- Hudson Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
24
|
De Kloet SR. Molecular sex identification of tinamous with PCR using primers derived from the spindlin gene. ACTA ACUST UNITED AC 2002. [DOI: 10.1046/j.1471-8286.2002.00279.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Marec F, Tothova A, Sahara K, Traut W. Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity (Edinb) 2001; 87:659-71. [PMID: 11903561 DOI: 10.1046/j.1365-2540.2001.00958.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physical basis of non-Mendelian segregation of a sex-linked marker was studied in sex- chromosome mutant females of eight ASF ('abnormal segregating females') lines in the flour moth, Ephestia kuehniella. Electron microscopical analysis of microspread synaptonemal complexes revealed that in one line, the Z chromosome segment that contained the dz+ allele was translocated onto an autosome. The resulting quadrivalent visible in early female meiosis was 'corrected' into two bivalents in later stages. This explains autosomal inheritance of the sex chromosome marker in this strain. In the other seven ASF lines, the type of meiotic pairing of an additional fragment (Zdz+) of the Z chromosome was responsible for abnormal segregation of the marker gene. In several of these lines, Zdz+ contained a piece of the W chromosome in addition to the Z segment, as was confirmed by comparative genomic hybridization (CGH). Zdz+ formed three alternative pairing configurations with the original sex chromosomes: (i) a WZZdz+ trivalent, (ii) a WZ bivalent and a Zdz+ univalent or (iii) a ZZdz+ bivalent and a W univalent. In the most frequent WZZdz+ configuration, Zdz+ synapsed with Z and, consequently, segregated with W, simulating W linkage. This explains the predominant occurrence of the parental phenotypes in the progeny. Zdz+ univalents or W univalents, on the other hand, segregated randomly, resulting in both parental and nonparental phenotypes. In two of these lines, the Zdz+ was transmitted only to females. The results suggest that the W chromosome segment in Zdz+ of these lines contains a male-killing factor which makes it incompatible with male development. Our data provide direct evidence for the regular transmission of radiation-induced fragments from lepidopteran chromosomes through more than 50 generations. This is facilitated by the holokinetic nature of lepidopteran chromosomes. We conclude that Zdz+ fragments may persist as long as they possess active kinetochore elements.
Collapse
Affiliation(s)
- F Marec
- Department of Genetics, Institute of Entomology, Czech Academy of Sciences, Branisovská 31, CZ-370 05 Ceské Budejovice, Czech Republic.
| | | | | | | |
Collapse
|