1
|
Beckelmann J, Budik S, Bartel C, Aurich C. Evaluation of Xist expression in preattachment equine embryos. Theriogenology 2012; 78:1429-36. [DOI: 10.1016/j.theriogenology.2012.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/30/2022]
|
2
|
Raudsepp T, Das PJ, Avila F, Chowdhary BP. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev 2011; 6:72-83. [PMID: 21876343 DOI: 10.1159/000330627] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pseudoautosomal region (PAR) is a unique and specialized segment on the mammalian sex chromosomes with known functions in male meiosis and fertility. Detailed molecular studies of the region in human and mouse show dramatic differences between the 2 PARs. Recent mapping efforts in horse, dog/cat, cattle/ruminants, pig and alpaca indicate that the PAR also varies in size and gene content between other species. Given that PAR genes escape X inactivation, these differences might critically affect the genetic consequences, such as embryonic survival and postnatal phenotypes of sex chromosome aneuploidies. The aim of this review is to combine the available information about the organization of the PAR in domestic species with the cytogenetic data on sex chromosome aneuploidies. We show that viable XO individuals are relatively frequently found in species with small PARs, such as horses, humans and mice but are rare or absent in species in which the PAR is substantially larger, like in cattle/ruminants, dogs, pigs, and alpacas. No similar correlation can be detected between the PAR size and the X chromosome trisomy in different species. Recent evidence about the likely involvement of PAR genes in placenta formation, early embryonic development and genomic imprinting are presented.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
3
|
Paria N, Raudsepp T, Pearks Wilkerson AJ, O'Brien PCM, Ferguson-Smith MA, Love CC, Arnold C, Rakestraw P, Murphy WJ, Chowdhary BP. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals. PLoS One 2011; 6:e21374. [PMID: 21799735 PMCID: PMC3143126 DOI: 10.1371/journal.pone.0021374] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022] Open
Abstract
Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY) contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse – an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages.
Collapse
Affiliation(s)
- Nandina Paria
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BPC); (TR)
| | - Alison J. Pearks Wilkerson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | | | | | - Charles C. Love
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Carolyn Arnold
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Rakestraw
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Bhanu P. Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BPC); (TR)
| |
Collapse
|
4
|
Kakoi H, Hirota K, Gawahara H, Kurosawa M, Kuwajima M. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers. Equine Vet J 2010; 37:143-7. [PMID: 15779627 DOI: 10.2746/0425164054223787] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. OBJECTIVES To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. METHODS We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. RESULTS Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. CONCLUSIONS AND POTENTIAL RELEVANCE Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.
Collapse
Affiliation(s)
- H Kakoi
- Laboratory of Racing Chemistry, 1731-2 Tsuruta-cho, Utsunimiya 320-0851, Japan
| | | | | | | | | |
Collapse
|
5
|
Ahn YC, Cho MH, Seo JW, Yoon IK, Jung DH, Lee EY, Nam YH, Park SM, Jang WC. Discrimination of Hanwoo from Holstein and Mixed Beef by DHPLC. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2009. [DOI: 10.5012/jkcs.2009.53.6.742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Molecular Sexing Using SRY and ZF Genes in Pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2005. [DOI: 10.5187/jast.2005.47.3.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Raudsepp T, Santani A, Wallner B, Kata SR, Ren C, Zhang HB, Womack JE, Skow LC, Chowdhary BP. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci U S A 2004; 101:9321-6. [PMID: 15197257 PMCID: PMC438975 DOI: 10.1073/pnas.0403011101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We herein report a detailed physical map of the horse Y chromosome. The euchromatic region of the chromosome comprises approximately 15 megabases (Mb) of the total 45- to 50-Mb size and lies in the distal one-third of the long arm, where the pseudoautosomal region (PAR) is located terminally. The rest of the chromosome is predominantly heterochromatic. Because of the unusual organization of the chromosome (common to all mammalian Y chromosomes), a number of approaches were used to crossvalidate the results. Analysis of the 5,000-rad horse x hamster radiation hybrid panel produced a map spanning 88 centirays with 8 genes and 15 sequence-tagged site (STS) markers. The map was verified by several fluorescence in situ hybridization approaches. Isolation of bacterial artificial chromosome (BAC) clones for the radiation hybrid-mapped markers, end sequencing of the BACs, STS development, and bidirectional chromosome walking yielded 109 markers (100 STS and 9 genes) contained in 73 BACs. STS content mapping grouped the BACs into seven physically ordered contigs (of which one is predominantly ampliconic) that were verified by metaphase-, interphase-, and fiber-fluorescence in situ hybridization and also BAC fingerprinting. The map spans almost the entire euchromatic region of the chromosome, of which 20-25% (approximately 4 Mb) is covered by isolated BACs. The map is presently the most informative among Y chromosome maps in domesticated species, third only to the human and mouse maps. The foundation laid through the map will be critical in obtaining complete sequence of the euchromatic region of the horse Y chromosome, with an aim to identify Y specific factors governing male infertility and phenotypic sex variation.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Raudsepp T, Lee EJ, Kata SR, Brinkmeyer C, Mickelson JR, Skow LC, Womack JE, Chowdhary BP. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc Natl Acad Sci U S A 2004; 101:2386-91. [PMID: 14983019 PMCID: PMC356960 DOI: 10.1073/pnas.0308513100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bugno M, Klukowska J, Słota E, Tischner M, Switoński M. A sporadic case of the sex-reversed mare (64,XY; SRY-negative): molecular and cytogenetic studies of the Y chromosome. Theriogenology 2003; 59:1597-603. [PMID: 12559464 DOI: 10.1016/s0093-691x(02)01197-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sex-reversal syndrome appears frequently in the horse. The mare carriers of this syndrome lack of SRY gene. It is suggested that sex-reversal syndrome is probably caused by transfer of the SRY gene from Y to the X chromosome, due to abnormal meiotic exchange. The aim of the study was molecular analysis of the Y-linked genes in a case of the sex-reversed infertile mare with 64,XY karyotype. The karyotype was established on the basis of analysis of 350 metaphase spreads stained by CBG banding. Molecular analysis of the loci assigned to the Y chromosome revealed absence of the SRY gene and presence of the other studied loci (ZFY, AMEL-Y and STS-Y). In this animal all fragments representing X chromosome (ZFX, AMEL-X and STS-X) were detected. External genitalia in the mare were normal, uterus was small and ovaries (examined by ultrasonography) extremely small. The mechanism of sex-reversal syndrome formation was discussed. It is postulated that during spermatogenesis in the sire two crossing-over events between the X and Y chromosomes occurred. One of them took place between the ZFY and SRY loci and another one between the SRY locus and the centromere.
Collapse
Affiliation(s)
- Monika Bugno
- Department of Immuno and Cytogenetics, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland.
| | | | | | | | | |
Collapse
|
10
|
Murray JD. Horse genomics and reproduction. Theriogenology 2002. [DOI: 10.1016/s0093-691x(02)00910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Raudsepp T, Kata SR, Piumi F, Swinburne J, Womack JE, Skow LC, Chowdhary BP. Conservation of gene order between horse and human X chromosomes as evidenced through radiation hybrid mapping. Genomics 2002; 79:451-7. [PMID: 11863376 DOI: 10.1006/geno.2002.6723] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A radiation hybrid (RH) map of the equine X chromosome (ECAX) was obtained using the recently produced 5000(rad) horse x hamster hybrid panel. The map comprises 34 markers (16 genes and 18 microsatellites) and spans a total of 676 cR(5000), covering almost the entire length of ECAX. Cytogenetic alignment of the RH map was improved by fluorescent in situ hybridization mapping of six of the markers. The map integrates and refines the currently available genetic linkage, syntenic, and cytogenetic maps, and adds new loci. Comparison of the physical location of the 16 genes mapped in this study with the human genome reveals similarity in the order of the genes along the entire length of the two X chromosomes. This degree of gene order conservation across evolutionarily distantly related species has up to now been reported only between human and cat. The ECAX RH map provides a framework for the generation of a high-density map for this chromosome. The map will serve as an important tool for positional cloning of X-linked diseases/conditions in the horse.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Hirota K, Piumi F, Sato F, Ishida N, Guérin G, Miura N, Hasegawa T. FISH assignment of two equine BAC clones containing SRY and ZFY. Anim Genet 2001; 32:326-7. [PMID: 11683728 DOI: 10.1046/j.1365-2052.2001.0730h.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K Hirota
- Department of Molecular Genetics, Laboratory of Racing Chemistry, 1731-2 Tsuruta-Cho, Utsunomiya 320-0851, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Mäkinen A, Suojala L, Niini T, Katila T, Tozaki T, Miyake Y, Hasegawa T. X chromosome detection in an XO mare using a human X paint probe, and PCR detection of SRY and amelogenin genes in 3 XY mares. Equine Vet J 2001; 33:527-30. [PMID: 11558752 DOI: 10.2746/042516401776254844] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A Mäkinen
- University of Helsinki, Department of Animal Science, Finland
| | | | | | | | | | | | | |
Collapse
|
14
|
Lindgren G, Breen M, Godard S, Bowling A, Murray J, Scavone M, Skow L, Sandberg K, Guérin G, Binns M, Ellegren H. Mapping of 13 horse genes by fluorescence in-situ hybridization (FISH) and somatic cell hybrid analysis. Chromosome Res 2001; 9:53-9. [PMID: 11272792 DOI: 10.1023/a:1026743700819] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report fluorescence in-situ hybridization (FISH) and somatic cell hybrid mapping data for 13 different horse genes (ANP, CD2, CLU, CRISP3, CYP17, FGG, IL1RN, IL10, MMP13, PRM1, PTGS2, TNFA and TP53). Primers for PCR amplification of intronic or untranslated regions were designed from horse-specific DNA or mRNA sequences in GenBank. Two different horse bacterial artificial chromosome (BAC) libraries were screened with PCR for clones containing these 13 Type I loci, nine of which were found in the libraries. BAC clones were used as probes in dual colour FISH to confirm their precise chromosomal origin. The remaining four genes were mapped in a somatic cell hybrid panel. All chromosomal assignments except one were in agreement with human-horse ZOO-FISH data and revealed new and more detailed information on the equine comparative map. CLU was mapped by synteny to ECA2 while human-horse ZOO-FISH data predicted that CLU would be located on ECA9. The assignment of IL1RN permitted analysis of gene order conservation between HSA2 and ECA15, which identified that an event of inversion had occurred during the evolution of these two homologous chromosomes.
Collapse
Affiliation(s)
- G Lindgren
- Department of Evolutionary Biology, Norbyvägen, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shubitowski DM, Venta PJ, Douglass CL, Zhou RX, Ewart SL. Polymorphism identification within 50 equine gene-specific sequence tagged sites. Anim Genet 2001; 32:78-88. [PMID: 11421942 DOI: 10.1046/j.1365-2052.2001.00738.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The continued discovery of polymorphisms in the equine genome will be important for future studies using genomic screens and fine mapping for the identification of disease genes. Segments of 50 equine genes were examined for variability in 10 different horse breeds using a pool-and-sequence method. We identified 11 single nucleotide polymorphisms (SNPs) in 9380 bp of sequenced exon, and 25 SNPs, six microsatellites, and one insertion/deletion in 16961 bp of sequenced intron. Of all genes studied 52% contained at least one polymorphism, and polymorphisms were found at an overall rate of 1/613 bp. Several of the putative SNPs were tested and verified by restriction enzyme analysis using natural restriction sites or ones created by primer mutagenesis. The lowest allele frequency for a SNP detected in pooled samples was 10%. Three of the SNPs verified in the diverse horse pool were further tested in six breed-specific horse pools and were found to be reasonably variable within breeds. The pool-and-sequence method allows identification of polymorphisms in horse populations and will be a valuable tool for future disease gene and comparative mapping in horses.
Collapse
Affiliation(s)
- D M Shubitowski
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
16
|
Hasegaw T, Sato F, Ishida N, Fukushima Y, Mukoyama H. Sex determination by simultaneous amplification of equine SRY and amelogenin genes. J Vet Med Sci 2000; 62:1109-10. [PMID: 11073085 DOI: 10.1292/jvms.62.1109] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A quick method for sex determination of horses was developed. Simultaneous amplification of the equine sex-determining region of the Y chromosome gene (SRY) and amelogenin gene (AMEL) accomplished the determination of the presence of both the Y chromosome and SRY gene. In agarose gel electrophoresis, a normal stallion showed 1 SRY band and 3 AMEL (AMELX, AMELY, and AMELX/AMELY heteroduplex) bands, and a normal mare showed a single AMELX band. In XY-mares, 3 AMEL bands were detected as in a normal stallion, but no SRY band. The present method enables a quick diagnosis for XY-mare prior to cytogenetic analysis.
Collapse
Affiliation(s)
- T Hasegaw
- Laboratory of Molecular and Cellular Biology, Equine Research Institute, Japan Racing Association, Utsunomiya
| | | | | | | | | |
Collapse
|