1
|
de Assis R, Gonçalves LSA, Guyot R, Vanzela ALL. Abundance of distal repetitive DNA sequences in Capsicum L. (Solanaceae) chromosomes. Genome 2023; 66:269-280. [PMID: 37364373 DOI: 10.1139/gen-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Chili peppers (Solanaceae family) have great commercial value. They are commercialized in natura and used as spices and for ornamental and medicinal purposes. Although three whole genomes have been published, limited information about satellite DNA sequences, their composition, and genomic distribution has been provided. Here, we exploited the noncoding repetitive fraction, represented by satellite sequences, that tends to accumulate in blocks along chromosomes, especially near the chromosome ends of peppers. Two satellite DNA sequences were identified (CDR-1 and CDR-2), characterized and mapped in silico in three Capsicum genomes (C. annuum, C. chinense, and C. baccatum) using data from the published high-coverage sequencing and repeats finding bioinformatic tools. Localization using FISH in the chromosomes of these species and in two others (C. frutescens and C. chacoense), totaling five species, showed signals adjacent to the rDNA sites. A sequence comparison with existing Solanaceae repeats showed that CDR-1 and CDR-2 have different origins but without homology to rDNA sequences. Satellites occupied subterminal chromosomal regions, sometimes collocated with or adjacent to 35S rDNA sequences. Our results expand knowledge about the diversity of subterminal regions of Capsicum chromosomes, showing different amounts and distributions within and between karyotypes. In addition, these sequences may be useful for future phylogenetic studies.
Collapse
Affiliation(s)
- Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86097-570, Paraná, Brazil
| | | | - Romain Guyot
- Institute de Recherche pour le Développement, CIRAD, Université de Montpellier, UMR DIADE, Montpellier, France
| | | |
Collapse
|
2
|
Burchardt P, Buddenhagen CE, Gaeta ML, Souza MD, Marques A, Vanzela ALL. Holocentric Karyotype Evolution in Rhynchospora Is Marked by Intense Numerical, Structural, and Genome Size Changes. FRONTIERS IN PLANT SCIENCE 2020; 11:536507. [PMID: 33072141 PMCID: PMC7533669 DOI: 10.3389/fpls.2020.536507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/21/2020] [Indexed: 05/07/2023]
Abstract
Cyperaceae is a family of Monocotyledons comprised of species with holocentric chromosomes that are associated with intense dysploidy and polyploidy events. Within this family the genus Rhynchospora has recently become the focus of several studies that characterize the organization of the holocentric karyotype and genome structures. To broaden our understanding of genome evolution in this genus, representatives of Rhynchospora were studied to contrast chromosome features, C-CMA/DAPI band distribution and genome sizes. Here, we carried out a comparative analysis for 35 taxa of Rhynchospora, and generated new genome size estimates for 20 taxa. The DNA 2C-values varied up to 22-fold, from 2C = 0.51 pg to 11.32 pg, and chromosome numbers ranged from 2n = 4 to 61. At least 37% of our sampling exhibited 2n different from the basic number x = 5, and chromosome rearrangements were also observed. A large variation in C-CMA/DAPI band accumulation and distribution was observed as well. We show that genome variation in Rhynchospora is much larger than previously reported. Phylogenetic analysis showed that most taxa were grouped in clades corresponding to previously described taxonomic sections. Basic chromosome numbers are the same within every section, however, changes appeared in all the clades. Ancestral chromosome number reconstruction revealed n = 5 as the most likely ancestral complements, but n = 10 appears as a new possibility. Chromosome evolution models point to polyploidy as the major driver of chromosome evolution in Rhynchospora, followed by dysploidy. A negative correlation between chromosome size and diploid number open the discussion for holokinetic drive-based genome evolution. This study explores relationships between karyotype differentiation and genome size variation in Rhynchospora, and contrasts it against the phylogeny of this holocentric group.
Collapse
Affiliation(s)
- Paula Burchardt
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcos L. Gaeta
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | - Murilo D. Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- *Correspondence: André L. L. Vanzela, ; André Marques,
| | - André L. L. Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
- *Correspondence: André L. L. Vanzela, ; André Marques,
| |
Collapse
|
3
|
Relationship between epigenetic marks and the behavior of 45S rDNA sites in chromosomes and interphase nuclei of Lolium-Festuca complex. Mol Biol Rep 2018; 45:1663-1679. [PMID: 30121822 DOI: 10.1007/s11033-018-4310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
The grasses of the Lolium-Festuca complex show a prominent role in world agricultural scenario. Several studies have demonstrated that the plasticity of 45S rDNA sites has been recently associated with the possible fragility of the loci. Often, these fragile sites were observed as extended sites and gaps in metaphases. This organization can be evaluated in relation to their transcriptional activity/accessibility through epigenetic changes. Thus, this study aimed to investigate the relationship of the 5-methylcytosine and histone H3 lysine-9 dimethylation in different conformations of 45S rDNA sites in interphase nuclei and in metaphase chromosomes of L. perenne, L. multiflorum and F. arundinacea. The FISH technique using 45S rDNA probes was performed sequentially after the immunolocalization. The sites showed predominantly the following characteristics in the interphase nuclei: intra- and perinucleolar position, decondensed or partially condensed and hypomethylated and hyper/hypomethylated status. Extranucleolar sites were mainly hypermethylated for both epigenetic marks. The 45S rDNA sites with gaps identified in metaphases were always hypomethylated, which justifies it decondensed and transcriptional state. The frequency of sites with hypermethylated gaps was very low. The structural differences observed in these sites are directly related to the assessed epigenetic marks, justifying the different conformations throughout the cell cycle.
Collapse
|
4
|
Ribeiro T, Buddenhagen CE, Thomas WW, Souza G, Pedrosa-Harand A. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). PROTOPLASMA 2018; 255:263-272. [PMID: 28844108 DOI: 10.1007/s00709-017-1154-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 05/23/2023]
Abstract
Karyotype evolution in species with non-localised centromeres (holocentric chromosomes) is usually very dynamic and associated with recurrent fission and fusion (also termed agmatoploidy/symploidy) events. In Rhynchospora (Cyperaceae), one of the most species-rich sedge genera, all analysed species have holocentric chromosomes and their numbers range from 2n = 4 to 2n = 84. Agmatoploidy/symploidy and polyploidy were suggested as the main processes in the reshuffling of Rhynchospora karyotypes, although testing different scenarios of chromosome number evolution in a phylogenetic framework has not been attempted until now. Here, we used maximum likelihood and model-based analyses, in combination with genome size estimation and ribosomal DNA distribution, to understand chromosome evolution in Rhynchospora. Overall, chromosome number variation showed a significant phylogenetic signal and the majority of the lineages maintained a karyotype of 2n = 10 (~48% of the species), the most likely candidate for the ancestral number of the genus. Higher and lower chromosome numbers were restricted to specific clades, whilst polyploidy and/or fusion/fission events were present in specific branches. Variation in genome size and ribosomal DNA site number showed no correlation with ploidy level or chromosome number. Although different mechanisms of karyotype evolution (polyploidy, fusion and fission) seem to be acting in distinct lineages, the degree of chromosome variation and the main mechanisms involved are comparable to those found in some monocentric genera and lower than expected for a holocentric genus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | | | - Gustavo Souza
- Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Andrea Pedrosa-Harand
- Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
5
|
Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc Natl Acad Sci U S A 2015; 112:13633-8. [PMID: 26489653 DOI: 10.1073/pnas.1512255112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated "Tyba" and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle-dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.
Collapse
|
6
|
Cabral G, Marques A, Schubert V, Pedrosa-Harand A, Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun 2014; 5:5070. [PMID: 25295686 PMCID: PMC4190664 DOI: 10.1038/ncomms6070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022] Open
Abstract
Meiosis is a specialized cell division in sexually reproducing organisms before gamete formation. Following DNA replication, the canonical sequence in species with monocentric chromosomes is characterized by reductional segregation of homologous chromosomes during the first and equational segregation of sister chromatids during the second meiotic division. Species with holocentric chromosomes employ specific adaptations to ensure regular disjunction during meiosis. Here we present the analysis of two closely related plant species with holocentric chromosomes that display an inversion of the canonical meiotic sequence, with the equational division preceding the reductional. In-depth analysis of the meiotic divisions of Rhynchospora pubera and R. tenuis reveals that during meiosis I sister chromatids are bi-oriented, display amphitelic attachment to the spindle and are subsequently separated. During prophase II, chromatids are connected by thin chromatin threads that appear instrumental for the regular disjunction of homologous non-sister chromatids in meiosis II. The absence of a defined centromere in organisms with holocentric chromosomes presents particular problems for the control of chromosome segregation during meiosis. Cabral et al. present evidence that two plant species overcome this challenge by inverting the conventional sequence of meiotic divisions.
Collapse
Affiliation(s)
- Gabriela Cabral
- 1] Department of Botany, Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, Pernambuco 50670-420, Brazil [2] Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna A-1030, Austria
| | - André Marques
- Department of Botany, Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, Pernambuco 50670-420, Brazil
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, Gatersleben 06466, Germany
| | - Andrea Pedrosa-Harand
- Department of Botany, Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, Pernambuco 50670-420, Brazil
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
7
|
Roa F, Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 2012. [PMID: 23181612 PMCID: PMC3583730 DOI: 10.1186/1471-2148-12-225] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed.
Collapse
Affiliation(s)
- Fernando Roa
- Department of Botany Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco Center of Biological Sciences, Rua Nelson Chaves, s/n Cidade Universitária, Recife, PE, 50,670-420, Brazil
| | | |
Collapse
|
8
|
Sousa A, Barros e Silva A, Cuadrado A, Loarce Y, Alves M, Guerra M. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron 2011; 42:625-31. [DOI: 10.1016/j.micron.2011.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
9
|
Heckmann S, Schroeder-Reiter E, Kumke K, Ma L, Nagaki K, Murata M, Wanner G, Houben A. Holocentric Chromosomes of Luzula elegans Are Characterized by a Longitudinal Centromere Groove, Chromosome Bending, and a Terminal Nucleolus Organizer Region. Cytogenet Genome Res 2011; 134:220-8. [DOI: 10.1159/000327713] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
|
10
|
da Silva CRM, Quintas CC, Vanzela ALL. Distribution of 45S and 5S rDNA sites in 23 species of Eleocharis (Cyperaceae). Genetica 2010; 138:951-7. [PMID: 20680404 DOI: 10.1007/s10709-010-9477-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Studies of rDNA location in holocentric chromosomes of the Cyperaceae are scarce, but a few reports have indicated the occurrence of multiple 45S rDNA sites at terminal positions, and in the decondensed state of these regions in prometaphase/metaphase. To extend our knowledge of the number 45S and 5S rDNA sites and distribution in holocentric chromosomes of the Cyperaceae, 23 Brazilian species of Eleocharis were studied. FISH showed 45S rDNA signals always located in terminal regions, which varied from two (E. bonariensis with 2n = 20) to ten (E. flavescens with 2n = 10 and E. laeviglumis with 2n = 60). 5S rDNA showed less variation, with 16 species exhibiting two sites and 7 species four sites, preferentially at terminal positions, except for four species (E. subarticulata, E. flavescens, E. sellowiana and E. geniculata) that showed interstitial sites. The results are discussed in order to understand the predominance of terminal rDNA sites, the mechanisms involved in the interstitial positioning of 5S rDNA sites in some species, and the events of amplification and dispersion of 45S rDNA terminal sites.
Collapse
|
11
|
Guerra M, García MA. Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 2004; 47:134-40. [PMID: 15060610 DOI: 10.1139/g03-098] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cuscuta is a widely distributed genus of holoparasitic plants. Holocentric chromosomes have been reported only in species of one of its subgenera (Cuscuta subg. Cuscuta). In this work, a representative of this subgenus, Cuscuta approximata, was investigated looking for its mitotic and meiotic chromosome behaviour and the heterochromatin distribution. The mitotic chromosomes showed neither primary constriction nor Rabl orientation whereas the meiotic ones exhibited the typical quadripartite structure characteristic of holocentrics, supporting the assumption of holocentric chromosomes as a synapomorphy of Cuscuta subg. Cuscuta. Chromosomes and interphase nuclei displayed many heterochromatic blocks that stained deeply with hematoxylin, 4',6-diamidino-2-phenylindole (DAPI), or after C banding. The banded karyotype showed terminal or subterminal bands in all chromosomes and central bands in some of them. The single pair of 45S rDNA sites was observed at the end of the largest chromosome pair, close to a DAPI band and a 5S rDNA site. Two other 5S rDNA site pairs were found, both closely associated with DAPI bands. The noteworthy giant nuclei of glandular cells of petals and ovary wall exhibited large chromocentres typical of polytenic nuclei. The chromosomal location of heterochromatin and rDNA sites and the structure of the endoreplicated nuclei of C. approximata seemed to be similar to those known in monocentric nuclei, suggesting that centromeric organization has little or no effect on chromatin organization.
Collapse
Affiliation(s)
- Marcelo Guerra
- Department of Botany, Federal University of Pernambuco, Pernambuco, Brazil.
| | | |
Collapse
|
12
|
d'Alençon E, Piffanelli P, Volkoff AN, Sabau X, Gimenez S, Rocher J, Cérutti P, Fournier P. A genomic BAC library and a new BAC-GFP vector to study the holocentric pest Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:331-341. [PMID: 15041017 DOI: 10.1016/j.ibmb.2003.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/04/2003] [Accepted: 12/16/2003] [Indexed: 05/24/2023]
Abstract
Two genomic tools for the study of Lepidoptera and the holocentric structure of their chromosomes are presented in this paper. A bacterial artificial chromosome (BAC) library was constructed using nuclear DNA partially digested with HindIII from eggs of Spodoptera frugiperda. The library contains a total of 36,864 clones with an average insert size of 125 kb, which corresponds to approximately 11.5 genome equivalents. Hybridization screening of the library was performed with eight single-copy genes, giving an average hit of 10 clones per marker gene. Colinearity between the genome and BACs was demonstrated at the triose phosphate isomerase (tpi) locus. Probing of the library with a PCR fragment internal to the 18S ribosomal gene allowed an estimation of the rDNA locus size close to 115 repeats per haploid genome. A new vector (pBAC3.6eGFP) for transient transfection into S. frugiperda cell lines has been constructed. It is based on the BAC vector, pBAC3.6e, in which a gene encoding GFP was inserted under the control of the densovirus P9 promoter. This vector has the advantage to accommodate large genomic inserts and to be transfected in a large lepidopteran host range. It was used to construct a second BAC library from Sf9 cell nuclear DNA in order to allow a comparison between somatic and cell line genome organization.
Collapse
Affiliation(s)
- Emmanuelle d'Alençon
- Laboratoire de Pathologie Comparée, Institut National de la Recherche Agronomique (INRA) UMR 1231, Centre National de la recherche Scientifique (CNRS) FRE 2689, Univ. Montpellier II, 30380 Saint Christol-les-Alès, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
One of the most popular sequences for phylogenetic inference at the generic and infrageneric levels in plants is the internal transcribed spacer (ITS) region of the 18S-5.8S-26S nuclear ribosomal cistron. The prominence of this source of nuclear DNA sequence data is underscored by a survey of phylogenetic publications involving comparisons at the genus level or below, which reveals that of 244 papers published over the last five years, 66% included ITS sequence data. Perhaps even more striking is the fact that 34% of all published phylogenetic hypothesis have been based exclusively on ITS sequences. Notwithstanding the many important contributions of ITS sequence data to phylogenetic understanding and knowledge of genome relationships, a number of molecular genetic processes impact ITS sequences in ways that may mislead phylogenetic inference. These molecular genetic processes are reviewed here, drawing attention to both underlying mechanism and phylogenetic implications. Among the most prevalent complications for phylogenetic inference is the existence in many plant genomes of extensive sequence variation, arising from ancient or recent array duplication events, genomic harboring of pseudogenes in various states of decay, and/or incomplete intra- or inter-array homogenization. These phenomena separately and collectively create a network of paralogous sequence relationships potentially confounding accurate phylogenetic reconstruction. Homoplasy is shown to be higher in ITS than in other DNA sequence data sets, most likely because of orthology/paralogy conflation, compensatory base changes, problems in alignment due to indel accumulation, sequencing errors, or some combination of these phenomena. Despite the near-universal usage of ITS sequence data in plant phylogenetic studies, its complex and unpredictable evolutionary behavior reduce its utility for phylogenetic analysis. It is suggested that more robust insights are likely to emerge from the use of single-copy or low-copy nuclear genes.
Collapse
Affiliation(s)
- I Alvarez
- Department of Botany, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
14
|
CYTOGENETIC HETEROGENEITY IN COMMON HAPLOGYNE SPIDERS FROM ARGENTINA (ARACHNIDA, ARANEAE). JOURNAL OF ARACHNOLOGY 2002. [DOI: 10.1636/0161-8202(2002)030[0047:chichs]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
|
16
|
Vanzela AL, Guerra M. Heterochromatin differentiation in holocentric chromosomes of Rhynchospora (Cyperaceae). Genet Mol Biol 2000. [DOI: 10.1590/s1415-47572000000200034] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Holocentric chromosomes of six species of Rhynchospora, R. ciliata, R. pubera, R. riparia and R. barbata (2n = 10), R. nervosa (2n = 30) and R. globosa (2n = 36), were stained with CMA3/DAPI fluorochromes or treated with C-banding and sequentially stained with Giemsa or CMA3/DAPI. Variability in banding pattern was found among the species studied. Heterochromatin was observed on terminal and interstitial chromosome regions, indicating that the holocentric chromosomes of Rhynchospora show a heterochromatin distribution pattern similar to those plant monocentric chromosomes.
Collapse
|
17
|
Blackman RL, Spence JM, Normark BB. High diversity of structurally heterozygous karyotypes and rDNA arrays in parthenogenetic aphids of the genus Trama (Aphididae: Lachninae). Heredity (Edinb) 2000; 84 ( Pt 2):254-60. [PMID: 10762396 DOI: 10.1046/j.1365-2540.2000.00667.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Karyotypes of permanently parthenogenetic aphids of three species of the genus Trama show great diversity, particularly in the number and distribution of chromosomal elements containing highly repetitive sequences. Sampling at only a few sites in southern England, chromosome number varied from 14 to 23 in T. troglodytes, 9-12 in T. caudata and 10-14 in T. maritima, with some colonies having individuals of more than one karyotype. This variation was paralleled by differences in the number and distribution of rDNA arrays revealed by in situ hybridization. This high intraspecific karyotype diversity contrasts with very low genetic diversity in the same populations, suggesting rapid karyotype evolution. Although T. troglodytes feeds on many species of composite plants there was no evidence of any karyotype-associated host race formation.
Collapse
Affiliation(s)
- R L Blackman
- Department of Entomology, The Natural History Museum, London SW7 5BD, U.K.; Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|