1
|
Ott J, Sehr J, Schmidt N, Schliebs W, Erdmann R. Comparison of human PEX knockout cell lines suggests a dual role of PEX1 in peroxisome biogenesis. Biol Chem 2023; 404:209-219. [PMID: 36534601 DOI: 10.1515/hsz-2022-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.
Collapse
Affiliation(s)
- Julia Ott
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Jessica Sehr
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Nadine Schmidt
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
2
|
Cai R, Dong Y, Fang M, Fan Y, Cheng Z, Zhou Y, Gao J, Han F, Guo C, Ma X. Genome-Wide Association Identifies Risk Pathways for SAPHO Syndrome. Front Cell Dev Biol 2021; 9:643644. [PMID: 33816493 PMCID: PMC8012550 DOI: 10.3389/fcell.2021.643644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
SAPHO syndrome is a rare chronic inflammatory disease which is characterized by the comprehensive manifestations of bone, joint, and skin. However, little is known about the pathogenesis of SAPHO syndrome. A genome-wide association study (GWAS) of 49 patients and 121 control subjects have primarily focused on identification of common genetic variants associated with SAPHO, the data were analyzed by classical multiple logistic regression. Later, GWAS findings were further validated using whole exome sequencing (WES) in 16 patients and 15 controls to identify potentially functional pathways involved in SAPHO pathogenesis. In general, 40588 SNPs in genomic regions were associated with P < 0.05 after filter process, only 9 SNPs meet the expected cut-off P-value, however, none of them had association with SAPHO syndrome based on published literatures. And then, 15 pathways were found involved in SAPHO pathogenesis, of them, 6 pathways including osteoclast differentiation, bacterial invasion of epithelial cells, et al., had strong association with skin, osteoarticular manifestations of SAPHO or inflammatory reaction based published research. This study identified aberrant osteoclast differentiation and other pathways were involved in SAPHO syndrome. This finding may give insight into the understanding of pathogenic genes of SAPHO and provide the basis for SAPHO research and treatment.
Collapse
Affiliation(s)
- Ruikun Cai
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Yichao Dong
- National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Mingxia Fang
- National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Yuxuan Fan
- National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Zian Cheng
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Yue Zhou
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Jianen Gao
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Feifei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changlong Guo
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
3
|
Daich Varela M, Jani P, Zein WM, D'Souza P, Wolfe L, Chisholm J, Zalewski C, Adams D, Warner BM, Huryn LA, Hufnagel RB. The peroxisomal disorder spectrum and Heimler syndrome: Deep phenotyping and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:618-630. [PMID: 32866347 DOI: 10.1002/ajmg.c.31823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The spectrum of peroxisomal disorders is wide and comprises individuals that die in the first year of life, as well as people with sensorineural hearing loss, retinal dystrophy and amelogenesis imperfecta. In this article, we describe three patients; two diagnosed with Heimler syndrome and a third one with a mild-intermediate phenotype. We arrived at these diagnoses by conducting complete ophthalmic (National Eye Institute), auditory (National Institute of Deafness and Other Communication Disorders), and dental (National Institute of Dental and Craniofacial Research) evaluations, as well as laboratory and genetic testing. Retinal degeneration with macular cystic changes, amelogenesis imperfecta, and sensorineural hearing loss were features shared by the three patients. Patients A and C had pathogenic variants in PEX1 and Patient B, in PEX6. Besides analyzing these cases, we review the literature regarding mild peroxisomal disorders, their pathophysiology, genetics, differential diagnosis, diagnostic methods, and management. We suggest that peroxisomal disorders are considered in every child with sensorineural hearing loss and retinal degeneration. These patients should have a dental evaluation to rule out amelogenesis imperfecta as well as audiologic examination and laboratory testing including peroxisomal biomarkers and genetic testing. Appropriate diagnosis can lead to better genetic counseling and management of the associated comorbidities.
Collapse
Affiliation(s)
- Malena Daich Varela
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Priyam Jani
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lynne Wolfe
- Undiagnosed Diseases Program, Common Fund, NIH, Bethesda, Maryland, USA
| | - Jennifer Chisholm
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - David Adams
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.,Undiagnosed Diseases Program, Common Fund, NIH, Bethesda, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
4
|
Association between the intrinsically disordered protein PEX19 and PEX3. PLoS One 2014; 9:e103101. [PMID: 25062251 PMCID: PMC4111287 DOI: 10.1371/journal.pone.0103101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
In peroxisomes, peroxins (PEXs) 3 and 19 are the principal protein components of the machinery required for early peroxisomal biogenesis. For further insight into the interaction of PEX3 and PEX19, we used hydrogen exchange mass spectrometry to monitor conformational changes during complex formation between PEX3 and PEX19 in vitro. Our data showed that PEX19 remained highly flexible during interaction with PEX3. However, we could detect three changes, one each in the N-and C-terminus along with a small stretch in the middle of PEX19 (F64-L74) which became shielded from hydrogen exchange when interacting with PEX3. PEX3 became more protected from hydrogen exchange in the binding groove for PEX19 with only small changes elsewhere. Most likely the N-terminus of PEX19 initiates the binding to PEX3, and then subtle conformational changes in PEX3 affect the surface of the PEX3 molecule. PEX19 in turn, is stabilized by folding of a short helix and its C-terminal folding core permitting PEX19 to bind to PEX3 with higher affinity than just the N-terminal interaction allows. Thus within the cell, PEX3 is stabilized by PEX19 preventing PEX3 aggregation.
Collapse
|
5
|
Ro M, Park J, Nam M, Bang HJ, Yang J, Choi KS, Kim SK, Chung JH, Kwack K. Association between peroxisomal biogenesis factor 7 and autism spectrum disorders in a Korean population. J Child Neurol 2012; 27:1270-5. [PMID: 22378669 DOI: 10.1177/0883073811435507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication, impaired reciprocal social interaction, and repetitive patterns of behaviors or interests. Although the cause of autism spectrum disorder remains elusive, the present study identified peroxisomal biogenesis factor 7 (PEX7) as a gene associated with autism spectrum disorder, and this association was examined in a Korean population. PEX7 encodes a cytosolic receptor for peroxisome targeting signal 2 of peroxisomal matrix enzymes that are targeted to and translocated into the peroxisome. PEX7 defects are associated with rhizomelic chondrodysplasia punctata type 1 and Refsum disease. Mutations in PEX7 are related to a variety of mild to severe clinical symptoms, including mental retardation. The analysis of 9 intronic single nucleotide polymorphisms in 214 patients with autism spectrum disorder and 258 controls revealed the association of 2 single nucleotide polymorphisms and 1 haplotype with autism spectrum disorder (P < .05).
Collapse
Affiliation(s)
- MyungJa Ro
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Iwasa M, Yamagata T, Mizuguchi M, Itoh M, Matsumoto A, Hironaka M, Honda A, Momoi MY, Shimozawa N. ContiguousABCD1 DXS1357Edeletion syndrome: Report of an autopsy case. Neuropathology 2012; 33:292-8. [DOI: 10.1111/j.1440-1789.2012.01348.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Mitsuaki Iwasa
- Department of Pediatrics; Jichi Medical University; Tochigi
| | | | - Masashi Mizuguchi
- Department of Developmental Medical Sciences; Graduate School of Medicine; the University of Tokyo; Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo; Japan
| | | | | | - Ayako Honda
- Division of Genomics Research; Life Science Research Center; Gifu University; Gifu; Japan
| | | | - Nobuyuki Shimozawa
- Division of Genomics Research; Life Science Research Center; Gifu University; Gifu; Japan
| |
Collapse
|
7
|
Koizumi K, Higashida H, Yoo S, Islam MS, Ivanov AI, Guo V, Pozzi P, Yu SH, Rovescalli AC, Tang D, Nirenberg M. RNA interference screen to identify genes required for Drosophila embryonic nervous system development. Proc Natl Acad Sci U S A 2007; 104:5626-31. [PMID: 17376868 PMCID: PMC1838491 DOI: 10.1073/pnas.0611687104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA interference (RNAi) has been shown to be a powerful method to study the function of genes in vivo by silencing endogenous mRNA with double-stranded (ds) RNA. Previously, we performed in vivo RNAi screening and identified 43 Drosophila genes, including 18 novel genes required for the development of the embryonic nervous system. In the present study, 22 additional genes affecting embryonic nervous system development were found. Novel RNAi-induced phenotypes affecting nervous system development were found for 16 of the 22 genes. Seven of the genes have unknown functions. Other genes found encode transcription factors, a chromatin-remodeling protein, membrane receptors, signaling molecules, and proteins involved in cell adhesion, RNA binding, and ion transport. Human orthologs were identified for proteins encoded by 16 of the genes. The total number of dsRNAs that we have tested for an RNAi-induced phenotype affecting the embryonic nervous system, including our previous study, is 7,312, which corresponds to approximately 50% of the genes in the Drosophila genome.
Collapse
Affiliation(s)
- Keita Koizumi
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan; and
| | - Siuk Yoo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mohamad Saharul Islam
- *Kanazawa University, 21st Century Centers of Excellence Program on Innovative Brain Science on Development, Learning, and Memory, Kanazawa 920-8640, Japan
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan; and
| | - Andrej I. Ivanov
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vicky Guo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paola Pozzi
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shu-Hua Yu
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alessandra C. Rovescalli
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Derek Tang
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marshall Nirenberg
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Saleem RA, Smith JJ, Aitchison JD. Proteomics of the peroxisome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1541-51. [PMID: 17050007 PMCID: PMC1858641 DOI: 10.1016/j.bbamcr.2006.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Genomes provide us with a blue print for the potential of a cell. However, the activity of a cell is expressed in its proteome. Full understanding of the complexity of cells demands a comprehensive view of the proteome; its interactions, activity states and organization. Comprehensive proteomic approaches applied to peroxisomes have yielded new insights into the organelle and its dynamic interplay with other cellular structures. As technologies and methodologies improve, proteomics hold the promise for new discoveries of peroxisome function and a full description of this dynamic organelle.
Collapse
Affiliation(s)
| | | | - JD Aitchison
- * Corresponding author: JD Aitchison, Institute for Systems Biology, 1441 N 34 Street, Seattle, Washington, USA, 98103,
| |
Collapse
|
9
|
Dhaunsi GS. Molecular mechanisms of organelle biogenesis and related metabolic diseases. Med Princ Pract 2005; 14 Suppl 1:49-57. [PMID: 16103713 DOI: 10.1159/000086184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022] Open
Abstract
Organelle biogenesis is regulated by transcriptional networks that modulate expression of specific genes encoding organellar proteins. Structural and functional specificity of organelles requires not only the transcription of specific genes and translation of resulting mRNAs, but also the transfer of encoded polypeptides to their site of function through signaling peptides. A defect in targeting of proteins to their subcellular site of function may not necessarily prevent biogenesis of the organelle, but would definitely lead to formation of a defective organelle with respect to that specific function. Several metabolic diseases are associated with dysfunction or defects in organelle biogenesis; among these, peroxisome biogenesis disorders, mitochondrial biogenesis defects and lysosomal storage disorders are an extensively studied group of genetic diseases where biogenesis of the organelle is compromised either due to a defect in assembly of the organelle itself or impaired import of matrix proteins into the organelle. Recent advances in biochemical and molecular aspects of biogenesis of subcellular organelles have not only unraveled the mechanisms for organization of cellular networks, but have also provided new insights into the development of metabolic diseases that are caused by disruption of organelle biogenesis. This article reviews the molecular mechanisms of biogenesis of mitochondria, lysosomes and peroxisomes in relation to the metabolic diseases of genetic or nongenetic origin.
Collapse
Affiliation(s)
- Gursev S Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
10
|
Abstract
There are numerous neurodegenerative and neurometabolic disorders of childhood. Individually, however, they are quite rare. Some may be seen only once in a lifetime at a given medical center, even one devoted to the specialized care of children. This article presents the classic neuroimaging features of some of the more commonly seen entities and of some of the more recently described metabolic disorders.
Collapse
Affiliation(s)
- Susan Blaser
- Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
11
|
Peduto A, Baumgartner MR, Verhoeven NM, Rabier D, Spada M, Nassogne MC, Poll-The BTT, Bonetti G, Jakobs C, Saudubray JM. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 2004; 82:224-30. [PMID: 15234336 DOI: 10.1016/j.ymgme.2004.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 03/12/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
Peroxisomal disorders include a complex spectrum of diseases, characterized by a high heterogeneity from both the clinical and the biochemical points of view. Specific assays are required for the study of peroxisome metabolism. Among these, pipecolic acid evaluation is considered as a supplementary test. We have established the diagnostic role of pipecolic acid in 30 patients affected by a peroxisomal defect (5 Zellweger syndromes, 10 Infantile Refsum diseases, 1 neonatal adrenoleukodystrophy, 6 patients affected by a peroxisomal biogenesis disorder with unclassified phenotype, 1 case of rhizomelic chondrodysplasia punctata (RCDP), 2 acyl-CoA oxidase deficiencies, 2 bifunctional enzyme deficiencies, 2 Refsum diseases, and 1 beta-oxidation deficiency). Pipecolic acid was increased in all generalized peroxisomal disorders, while normal pipecolic acid with abnormal very long chain fatty acid concentrations was strong evidence for a single peroxisomal enzyme deficiency. Unexpectedly, hyperpipecolic acidaemia was found also in a child affected by RCDP and in two patients with Refsum disease. In six patients the suggestion of a peroxisomal disorder was raised by the fortuitous finding of a pipecolic acid peak in amino acid chromatography, routinely performed as a general metabolic screening. For all patients, pipecolic acid proved to be a useful parameter in the biochemical classification of peroxisomal disorders.
Collapse
|
12
|
Warner DR, Roberts EA, Greene RM, Pisano MM. Identification of novel Smad binding proteins. Biochem Biophys Res Commun 2004; 312:1185-90. [PMID: 14651998 DOI: 10.1016/j.bbrc.2003.11.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The TGFbetas, a family of secreted polypeptide growth factors, are critical regulators of mammalian orofacial development. The importance of the TGFbetas in development of the orofacial region in mice is underscored by the resulting orofacial clefts in mice with targeted deletion of either TGFbeta2 or TGFbeta3 and most recently, a conditional knockout of the type II TGFbeta receptor (TbetaRII) gene. The TGFbetas signal via binding to specific cell surface receptors which, in turn, activates translocation of the nucleocytoplasmic Smad transcriptional regulators. Smads 2 and 3 are TGFbeta-specific transcriptional regulators that bind DNA through their conserved MH1 domains and activate or inhibit transcription of TGFbeta-responsive genes through their MH2 domains. To search for novel Smad binding proteins expressed in developing murine orofacial tissue, a yeast two-hybrid assay was utilized to screen a cDNA expression library constructed from fetal murine orofacial tissue. Several novel Smad binding proteins were identified. These include a putative zinc finger protein (ZNF198), peroxisomal biogenesis factor 6 (Pex6), eucaryotic translation initiation factor 4E nuclear import factor 1 (4-ET), and splicing factor 3b subunit 2 (SF3b2). Results of the yeast two-hybrid screen were verified by GST pull-down assays which confirmed the interaction of these proteins with the MH2 domain of Smad 3, and also indicated interaction of these proteins with additional Smad family members. The identification of these proteins as Smad binding partners allows exploration of new mechanisms whereby TGFbeta signaling may be regulated, and reveals additional potential interactions with other signaling pathways.
Collapse
Affiliation(s)
- Dennis R Warner
- Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville Birth Defects Center, ULSD, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
13
|
Stasyk OV, Nazarko VY, Pochapinsky OD, Nazarko TY, Veenhuis M, Sibirny AA. Identification of intragenic mutations in the Hansenula polymorpha PEX6 gene that affect peroxisome biogenesis and methylotrophic growth. FEMS Yeast Res 2003; 4:141-7. [PMID: 14613878 DOI: 10.1016/s1567-1356(03)00153-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Two interacting AAA ATPases, Pex1p and Pex6p, are indispensable for peroxisome biogenesis in different organisms. Mutations affecting corresponding genes are the most common cause of the peroxisome biogenesis disorders in humans. By UV mutagenesis of the Hansenula polymorpha pex6 mutant, deficient in peroxisome biogenesis, we isolated a conditional cold-sensitive strain with restored ability to grow in methanol medium at 37 degrees C but not at 28 degrees C. Sequencing of the pex6 allele revealed a point mutation in the first AAA module of the PEX6 gene that leads to substitution of a conserved amino acid residue (G737E). An additional intragenic mutation identified in the cold-sensitive pex6 allele leads to a conserved amino acid substitution in the second AAA domain (R1000G). Electron microscopic analysis revealed restored peroxisomes in methanol-induced cold-sensitive pex6 cells at both permissive and restrictive temperatures. If separated, the secondary mutation did not affect methylotrophic growth. Our data suggest that H. polymorpha Pex6p may have a complex function in peroxisome biogenesis in which identified amino acid residues are involved.
Collapse
Affiliation(s)
- Oleh V Stasyk
- Institute of Cell Biology, Drahomanov Str. 14/16, 79005, Lviv, Ukraine
| | | | | | | | | | | |
Collapse
|
14
|
Dzitoyeva S, Dimitrijevic N, Manev H. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi). BMC Genomics 2003; 4:33. [PMID: 12914675 PMCID: PMC194572 DOI: 10.1186/1471-2164-4-33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 08/12/2003] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND RNA interference (RNAi) is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly) gene (corresponding to a putative gene CG5652/GM06434), that we named beltless based on an embryonic loss-of-function phenotype. RESULTS Beltless mRNA is expressed in all developmental stages except in 0-6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp) beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless) of the abdominal segments A2-A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1)RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1)RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. CONCLUSIONS We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF) NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should elucidate the role and mechanism of action of beltless during Drosophila development and in adults, including in the adult nervous system.
Collapse
Affiliation(s)
- Svetlana Dzitoyeva
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Nikola Dimitrijevic
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Hari Manev
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
15
|
Abstract
Peroxisomes are single membrane-bound cell organelles performing numerous metabolic functions. The present article aims to give an overview of our current knowledge about inherited peroxisomal disorders in which these organelles are lacking or one or more of their functions are impaired. They are multiorgan disorders and the nervous system is implicated in most. After a summary of the historical names and categories, each having distinct symptoms and prognosis, microscopic pathology is reviewed in detail. Data from the literature are added to experience in the authors' laboratory with 167 liver biopsy and autopsy samples from peroxisomal patients, and with a smaller number of chorion samples for prenatal diagnosis, adrenal-, kidney-, and brain samples. Various light and electron microscopic methods are used including enzyme- and immunocytochemistry, polarizing microscopy, and morphometry. Together with other laboratory investigations and clinical data, this approach continues to contribute to the diagnosis and further characterization of peroxisomal disorders, and the discovery of novel variants. When liver specimens are examined, three main groups including 9 novel variants (33 patients) are distinguished: (1) absence or (2) presence of peroxisomes, and (3) mosaic distribution of cells with and without peroxisomes (10 patients). Renal microcysts, polarizing trilamellar inclusions, and insoluble lipid in macrophages in liver, adrenal cortex, brain, and in interstitial cells of kidney are also valuable for classification. On a genetic basis, complementation of fibroblasts has classified peroxisome biogenesis disorders into 12 complementation groups. Peroxisome biogenesis genes (PEX), knock-out-mice, and induction of redundant genes are briefly reviewed, including some recent results with 4-phenylbutyrate. Finally, regulation of peroxisome expression during development and in cell cultures, and by physiological factors is discussed.
Collapse
Affiliation(s)
- Marianne Depreter
- Ghent University, Department of Human Anatomy, Embryology, Histology and Medical Physics, Belgium
| | | | | |
Collapse
|
16
|
Muth A, Mosandl A, Wanders RJA, Nowaczyk MJM, Baric I, Böhles H, Sewell AC. Stereoselective analysis of 2-hydroxysebacic acid in urine of patients with Zellweger syndrome and of premature infants fed with medium-chain triglycerides. J Inherit Metab Dis 2003; 26:583-92. [PMID: 14605504 DOI: 10.1023/a:1025908216639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chiral metabolite 2-hydroxysebacic acid (2-HS) is considered to be an important diagnostic marker for peroxisomal disorders. The pathway of formation of 2-HS, excreted in increased amounts in patients with peroxisomal diseases, is not absolutely clear. Moreover, there is no information about the enantiomeric distribution of 2-HS in human urine. Here, we describe the stereodifferentiation of 2-HS in urine samples of nine patients with Zellweger syndrome (ZS), and for the first time in urine samples of premature infants fed a medium-chain triglyceride (MCT)-containing diet. Using enantioselective multidimensional gas chromatography-mass spectrometry, an increased excretion of 2R-HS was observed in all investigated ZS patients. 2-HS was also present in urine samples of premature infants fed MCT. Analogously to the ZS patients, a dominant 2R-HS excretion in the urine samples of the premature infants was identified. The formation of 2-HS is expected to result from the same or similar pathways as described for ZS patients. Additionally, we determined the absolute configuration of urinary 3-hydroxysebacic acid (3-HS) in the cases investigated. The enantioselective analysis provides further information for the diagnosis and treatment of patients with impaired peroxisomal fatty acid oxidation. Further insight into the metabolic origin and the biochemical pathway leading to these urinary metabolites is provided.
Collapse
Affiliation(s)
- A Muth
- Institute of Food Chemistry, University of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Raas-Rothschild A, Wanders RJA, Mooijer PAW, Gootjes J, Waterham HR, Gutman A, Suzuki Y, Shimozawa N, Kondo N, Eshel G, Espeel M, Roels F, Korman SH. A PEX6-defective peroxisomal biogenesis disorder with severe phenotype in an infant, versus mild phenotype resembling Usher syndrome in the affected parents. Am J Hum Genet 2002; 70:1062-8. [PMID: 11873320 PMCID: PMC379104 DOI: 10.1086/339766] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2001] [Accepted: 01/14/2002] [Indexed: 11/03/2022] Open
Abstract
Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.
Collapse
|