1
|
Wang Z, Nie X, Gao F, Tang Y, Ma Y, Zhang Y, Gao Y, Yang C, Ding J, Wang X. Increasing brain N-acetylneuraminic acid alleviates hydrocephalus-induced neurological deficits. CNS Neurosci Ther 2023; 29:3183-3198. [PMID: 37222223 PMCID: PMC10580356 DOI: 10.1111/cns.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/25/2023] Open
Abstract
AIMS This metabolomic study aimed to evaluate the role of N-acetylneuraminic acid (Neu5Ac) in the neurological deficits of normal pressure hydrocephalus (NPH) and its potential therapeutic effect. METHODS We analyzed the metabolic profiles of NPH using cerebrospinal fluid with multivariate and univariate statistical analyses in a set of 42 NPH patients and 38 controls. We further correlated the levels of differential metabolites with severity-related clinical parameters, including the normal pressure hydrocephalus grading scale (NPHGS). We then established kaolin-induced hydrocephalus in mice and treated them using N-acetylmannosamine (ManNAc), a precursor of Neu5Ac. We examined brain Neu5Ac, astrocyte polarization, demyelination, and neurobehavioral outcomes to explore its therapeutic effect. RESULTS Three metabolites were significantly altered in NPH patients. Only decreased Neu5Ac levels were correlated with NPHGS scores. Decreased brain Neu5Ac levels have been observed in hydrocephalic mice. Increasing brain Neu5Ac by ManNAc suppressed the activation of astrocytes and promoted their transition from A1 to A2 polarization. ManNAc also attenuated the periventricular white matter demyelination and improved neurobehavioral outcomes in hydrocephalic mice. CONCLUSION Increasing brain Neu5Ac improved the neurological outcomes associated with the regulation of astrocyte polarization and the suppression of demyelination in hydrocephalic mice, which may be a potential therapeutic strategy for NPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Fang Gao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Yanmin Tang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Jing Ding
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xin Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia/ischemia impairs CD33 (Siglec-3)/TREM2 signaling: Potential role in Alzheimer's pathogenesis. Neurochem Int 2021; 150:105186. [PMID: 34530055 DOI: 10.1016/j.neuint.2021.105186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Recent genetic and molecular studies have indicated that the innate immune system, especially microglia, have a crucial role in the accumulation of β-amyloid plaques in Alzheimer's disease (AD). In particular, the CD33 receptor, also called Siglec-3, inhibits the TREM2 receptor-induced phagocytic activity of microglia. CD33 receptors recognize the α2,3 and α2,6-linked sialic groups in tissue glycocalyx, especially sialylated gangliosides in human brain. The CD33 receptor triggers cell-type specific responses, e.g., in microglia, CD33 inhibits phagocytosis, whereas in natural killer cells, it inhibits the cytotoxic activity of the NKG2D receptor. Nonetheless, the regulation of the activity of CD33 receptor needs to be clarified. For example, it seems that hypoxia/ischemia, a potential cause of AD pathology, increases the expression of CD33 and its downstream target SHP-1, a tyrosine phosphatase which suppresses the phagocytosis driven by TREM2. Moreover, hypoxia/ischemia increases the deposition of sialylated gangliosides, e.g., GM1, GM2, GM3, and GD1, which are ligands for inhibitory CD33/Siglec-3 receptors. In addition, β-amyloid peptides bind to the sialylated gangliosides in raft-like clusters and subsequently these gangliosides act as seeds for the formation of β-amyloid plaques in AD pathology. It is known that senile plaques contain sialylated GM1, GM2, and GM3 gangliosides, i.e., the same species induced by hypoxia/ischemia treatment. Sialylated gangliosides in plaques might stimulate the CD33/Siglec-3 receptors of microglia and thus impede TREM2-driven phagocytosis. We propose that hypoxia/ischemia, e.g., via the accumulation of sialylated gangliosides, prevents the phagocytosis of β-amyloid deposits by inhibiting CD33/TREM2 signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
3
|
Luptakova D, Baciak L, Pluhacek T, Skriba A, Sediva B, Havlicek V, Juranek I. Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult. Sci Rep 2018; 8:6952. [PMID: 29725040 PMCID: PMC5934395 DOI: 10.1038/s41598-018-25088-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Neonatal hypoxic-ischaemic (HI) encephalopathy is among the most serious complications in neonatology. In the present study, we studied the immediate (0 hour), subacute (36 hours) and late (144 hours) responses of the neonatal brain to experimental HI insult in laboratory rats. At the striatal level, the mass spectrometry imaging revealed an aberrant plasma membrane distribution of Na+/K+ ions in the oedema-affected areas. The failure of the Na+/K+ gradients was also apparent in the magnetic resonance imaging measurements, demonstrating intracellular water accumulation during the acute phase of the HI insult. During the subacute phase, compared with the control brains, an incipient accumulation of an array of N-acylphosphatidylethanolamine (NAPE) molecules was detected in the HI-affected brains, and both the cytotoxic and vasogenic types of oedema were detected. In the severely affected brain areas, abnormal distributions of the monosialogangliosides GM2 and GM3 were observed in two-thirds of the animals exposed to the insult. During the late stage, a partial restoration of the brain tissue was observed in most rats in both the in vivo and ex vivo studies. These specific molecular changes may be further utilized in neonatology practice in proposing and testing novel therapeutic strategies for the treatment of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Dominika Luptakova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic.,Institute of Experimental Pharmacology and Toxicology, CEM of the SAS, Bratislava, 841 04, Slovakia
| | - Ladislav Baciak
- Institute of Experimental Pharmacology and Toxicology, CEM of the SAS, Bratislava, 841 04, Slovakia.,Slovak University of Technology, Central Laboratories, Bratislava, 812 37, Slovakia
| | - Tomas Pluhacek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Olomouc, 771 47, Czech Republic
| | - Anton Skriba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Blanka Sediva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Vladimir Havlicek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic. .,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Olomouc, 771 47, Czech Republic.
| | - Ivo Juranek
- Institute of Experimental Pharmacology and Toxicology, CEM of the SAS, Bratislava, 841 04, Slovakia
| |
Collapse
|
4
|
Kreutz F, Frozza RL, Breier AC, de Oliveira VA, Horn AP, Pettenuzzo LF, Netto CA, Salbego CG, Trindade VMT. Amyloid-β induced toxicity involves ganglioside expression and is sensitive to GM1 neuroprotective action. Neurochem Int 2011; 59:648-55. [PMID: 21723896 DOI: 10.1016/j.neuint.2011.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/30/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
The effect of Aβ25-35 peptide, in its fibrillar and non-fibrillar forms, on ganglioside expression in organotypic hippocampal slice cultures was investigated. Gangliosides were endogenously labeled with D-[1-C(14)] galactose and results showed that Aβ25-35 affected ganglioside expression, depending on the peptide aggregation state, that is, fibrillar Aβ25-35 caused an increase in GM3 labeling and a reduction in GD1b labeling, whereas the non-fibrillar form was able to enhance GM1 expression. Interestingly, GM1 exhibited a neuroprotective effect in this organotypic model, since pre-treatment of the hippocampal slices with GM1 10 μM was able to prevent the toxicity triggered by the fibrillar Aβ25-35, when measured by propidium iodide uptake protocol. With the purpose of further investigating a possible mechanism of action, we analyzed the effect of GM1 treatment (1, 6, 12 and 24h) upon the Aβ-induced alterations on GSK3β dephosphorylation/activation state. Results demonstrated an important effect after 24-h incubation, with GM1 preventing the Aβ-induced dephosphorylation (activation) of GSK3β, a signaling pathway involved in apoptosis triggering and neuronal death in models of Alzheimer's disease. Taken together, present results provide a new and important support for ganglioside participation in development of Alzheimer's disease experimental models and suggest a protective role for GM1 in Aβ-induced toxicity. This may be useful for designing new therapeutic strategies for Alzheimer's treatment.
Collapse
Affiliation(s)
- Fernando Kreutz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stefanello FM, Kreutz F, Scherer EBS, Breier AC, Vianna LP, Trindade VMT, Wyse ATS. Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 2007; 25:473-7. [PMID: 17890041 DOI: 10.1016/j.ijdevneu.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022] Open
Abstract
Neurological dysfunction is observed in patients with severe hypermethioninemia, whose physiopathology is still poorly understood. In the current study we investigated the effect of chronic administration of methionine on the content and species of gangliosides and phospholipids, as well as on the concentration of cholesterol in rat cerebral cortex. Wistar rats received subcutaneous injections of methionine (1.34-2.68 micromol/g of body weight), twice a day, from the 6th to the 28th day of age and controls received saline. Animals were killed 12h after the last injection. Results showed that methionine administration significantly decreased the total content of lipids in cerebral cortex of rats. We also observed that this amino acid significantly reduced the absolute quantity of the major brain gangliosides (GM1, GD1a, GD1b and GT1b) and phospholipids (sphingomyelin, phosphatidylcholine and phosphatidylethanolamine). We also showed that Na+,K+-ATPase activity and TBARS were changed in cerebral cortex of rats subjected to hypermethioninemia. If confirmed in human beings, these data could suggest that the alteration in lipid composition, Na+,K+-ATPase activity and TBARS caused by methionine might contribute to the neurophysiopathology observed in hypermethioninemic patients.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Barrier L, Ingrand S, Piriou A, Touzalin A, Fauconneau B. Lactic acidosis stimulates ganglioside and ceramide generation without sphingomyelin hydrolysis in rat cortical astrocytes. Neurosci Lett 2005; 385:224-9. [PMID: 15964679 DOI: 10.1016/j.neulet.2005.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/18/2022]
Abstract
Acidosis is a ubiquitous feature of cerebral ischemia, and triggers a cascade of biochemical events that results in neuronal injury. The purpose of this study was to evaluate the effects of lactic acidosis on the ganglioside composition, the ceramide and sphingomyelin (SM) levels in rat cortical astrocytes. Primary astrocyte cultures were exposed to lactic acid (pH 5.5) for 2, 5 and 17 h, and cell death was evaluated at each time point. Gangliosides, ceramides and SM were analyzed by high-performance thin layer chromatography. Lactic acidosis caused a progressive increase of both GM3 and GD3 gangliosides up to 5 h of treatment. However, at 17 h of acidosis, GM3 tented to return to the normal level whereas GD3 accumulated. Additionally, ceramides were gradually generated, whereas no significant decrease of SM occured for 17 h of acidosis. These results suggest that ceramides were not produced by the breakdown of SM and may be served as metabolic precursor for the biosynthesis of GM3 and GD3. Since these lipids are important messengers of the adaptative responses to stress, accumulation of sphingolipids triggered by lactic acid exposure of astrocytes might play an important role in determining the outcomes of injurious processes.
Collapse
Affiliation(s)
- Laurence Barrier
- Groupe de Recherche sur le Vieillissement Cérébral, GReViC EA 3808, Faculté de Médecine et de Pharmacie, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
7
|
Monteiro SC, Stefanello FM, Vianna LP, Matte C, Barp J, Belló-Klein A, Trindade VMT, Wyse ATS. Ovariectomy enhances acetylcholinesterase activity but does not alter ganglioside content in cerebral cortex of female adult rats. Metab Brain Dis 2005; 20:35-44. [PMID: 15918548 DOI: 10.1007/s11011-005-2474-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present work we investigated the effect of ovariectomy on acetylcholinesterase (AChE) activity and ganglioside content in cerebral cortex of female rats. We also studied the activity of butyrylcholinesterase (BuChE) in serum of these animals. Adult Wistar rats were divided into three groups: (1) naive females (control), (2) sham-operated females and (3) castrated females (ovariectomy). Thirty days after ovariectomy, rats were sacrificed by decapitation without anaesthesia. Blood was collected and the serum used for BuChE determination. Cerebral cortex was homogenized to determine AChE activity and extracted with chlorophorm:methanol for ganglioside evaluation. Results showed that rats subjected to ovariectomy presented a significant increase of AChE activity, but did not change the content and the profile of gangliosides in cerebral cortex when compared to sham or naive rats. BuChE activity was decreased in serum of rats ovariectomized. Our findings suggest that the alteration in the activity of brain AChE, as well as serum BuChE activity caused by ovariectomy may contribute to the impaired cognition and/or other neurological dysfunction found in post-menopausal women.
Collapse
Affiliation(s)
- Siomara C Monteiro
- Departamento de Bioquimica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ramirez MR, Muraro F, Zylbersztejn DS, Abel CR, Arteni NS, Lavinsky D, Netto CA, Trindade VMT. Neonatal hypoxia-ischemia reduces ganglioside, phospholipid and cholesterol contents in the rat hippocampus. Neurosci Res 2003; 46:339-47. [PMID: 12804795 DOI: 10.1016/s0168-0102(03)00100-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia-ischemia is a common cause of neonatal brain damage producing serious impact on cerebral maturation. This report demonstrates that rats submitted to hypoxia-ischemia present a marked decrease in hippocampal gangliosides, phospholipids and cholesterol contents as from 7 days after the injury. Although chromatographic profiles of the different ganglioside species (GM1, GD1a, GD1b, and GT1b) from the hippocampus of hypoxic-ischemic hippocampi groups (HI) were apparently unaffected, as compared with controls, there were quantitative absolute reductions in HI. The phospholipid patterns were altered in HI as from the 14th to the 30th day after the injury, where phosphatidylcholine (PC) quantities were higher than phosphatidylethanolamine (PE); additionally, the cardiolipin band was detected only in hippocampi of control adult rats. In general, the absolute quantities of phospholipids were lower in HI than in correspondent controls since 7th day after the injury. Considering that reported effects were maintained, we suggest they express a late biochemical response triggered by the neonatal hypoxic-ischemic episode; the consequences would be cell death and a delay on brain development, expressed by a reduction on synaptogenesis and myelinogenesis processes.
Collapse
Affiliation(s)
- M Rosana Ramirez
- Departamento de Bioqui;mica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90 035-003, RS, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Trindade VMT, Brusque AM, Raasch JR, Pettenuzzo LE, Rocha HP, Wannmacher CMD, Wajne M. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis 2002; 17:93-102. [PMID: 12083341 DOI: 10.1023/a:1015464028616] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurological dysfunction and structural cerebral abnormalities are commonly found in patients with methylmalonic and propionic acidemia. However, the mechanisms underlying the neuropathology of these disorders are poorly understood. We have previously demonstrated that methylmalonic and propionic acids induce a significant reduction of ganglioside N-acetylneuraminic acid in the brain of rats subjected to chronic administration of these metabolites. In the present study, we investigated the in vivo effects of chronic administration of methylmalonic (MMA) and propionic (PA) acids (from the 6th to the 28th day of life) on the distribution and composition of gangliosides in the cerebellum and cerebral cortex of rats. Control rats were treated with the same volumes of saline. It was first verified that MMA and PA treatment did not modify body, cerebellum, or cortical weight, nor the ganglioside concentration in the cerebral cortex of the animals. In contrast, a significant reduction in total ganglioside content in the cerebellum of approximately 20-30% and 50% of control levels occurred in rats injected with MMA and PA, respectively. Moreover, chronic MMA and PA administration did not interfere with the ganglioside pattern in the cerebral cortex, whereas the distribution of individual gangliosides was altered in the cerebellum of MMA- and PA-treated animals. Rats injected with MMA demonstrated a marked decrease in GM1 and GD3, whereas chronic PA treatment provoked a significant reduction of all ganglioside species, with the exception of an increase in GM2. Since gangliosides are closely related to the dendritic surface and other neural membranes, indirectly reflecting synaptogenesis, these ganglioside abnormalities may be associated with the brain damage found in methylmalonic and propionic acidemias.
Collapse
Affiliation(s)
- V M T Trindade
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|