1
|
Liang Y, Wang F, Song Y, Tang C, Wu R, Feng Q, Han M, Li Y, Chen W, Zhang J, Jiang M, Wang Z. LC-MS based metabonomics study on protective mechanism of ESWW in cerebral ischemia via CYTC/Apaf-1/NDRG4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155543. [PMID: 38657364 DOI: 10.1016/j.phymed.2024.155543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/22/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Ershiwuwei Zhenzhu pills was originally recorded in the Tibetan medical book Si Bu Yi Dian in the 8th century AD and is now included in the Pharmacopoeia of the People's Republic of China (2020). The pills can calm the nerves and open the mind as well as treat cerebral ischemia reperfusion injury, stroke, hemiplegia. However, its quality standards have not yet been established, and the therapeutic effect on cerebral ischemia by regulating the mitochondrial apoptosis pathway has not been elucidated. STUDY DESIGN AND METHODS LC-MS was used to establish quality standards for Ershiwuwei Zhenzhu pills. Metabonomics, molecular docking, neuroethology, cerebral infarction ratio, pathological detection of diencephalon, cortex, and hippocampus, and molecular biology techniques were used to reveal the mechanism of the pills in regulating the mitochondrial apoptosis pathway to treat cerebral ischemia. RESULTS The contents of 20 chemical components in Ershiwuwei Zhenzhu pills from 12 batches and 8 manufacturers was determined for the first time. Eleven differential metabolites and three metabolic pathways, namely, fructose and mannose metabolism, glycerophospholipid metabolism, and purine metabolism, were identified by metabonomics. The pills improved the neuroethology abnormalities of MCAO rats and the pathological damage in the diencephalon and decreased the ratio of cerebral infarction. It also significantly reduced the mRNA expression of AIF, Apaf-1, cleared caspase8, CytC, and P53 mRNA in the brain tissue and the protein expression of Apaf-1 and CYTC and increased the protein expression of NDRG4. CONCLUSION In vitro quantitative analysis of the in vitro chemical components of Ershiwuwei Zhenzhu pills has laid the foundation for improving its quality control. The potential mechanism of the pills in treating cerebral ischemia may be related to the Apaf-1/CYTC/NDRG4 apoptosis pathway. This work provides guidance for clinical drug use for patients.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangjie Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanyue Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Miao Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
2
|
Kojo A, Yamada K, Yamamoto T. Glucose transporter 5 (GLUT5)-like immunoreactivity is localized in subsets of neurons and glia in the rat brain. J Chem Neuroanat 2016; 74:55-70. [PMID: 27036089 DOI: 10.1016/j.jchemneu.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
This study aimed at examining the distribution of glucose transporter 5 (GLUT5), which preferentially transports fructose, in the rat brain by immunohistochemistry and Western blotting. Small immunoreactive puncta (less than 0.7μm) were sparsely distributed all over the brain, some of which appeared to be associated with microglial processes detected by an anti-ionized calcium-binding adapter molecule 1 (Iba-1) monoclonal antibody. In addition, some of these immunoreactive puncta seemed to be associated with tanycyte processes that were labeled with anti-glial fibrillary acidic protein (GFAP) monoclonal antibody. Ependymal cells were also found to be immunopositive for GLUT5. Furthermore, several noticeable GLUT5 immunoreactive profiles were observed. GLUT5 immunoreactive neurons, confirmed by double staining with neuronal nuclei (NeuN), were seen in the entopeduncular nucleus and lateral hypothalamus. Cerebellar Purkinje cells were immunopositve for GLUT5. Dense accumulation of immunoreactive puncta, some of which were neuronal elements (confirmed by immunoelectron microscopy), were observed in the optic tract and their terminal fields, namely, superior colliculus, pretectum, nucleus of the optic tract, and medial terminal nucleus of the optic tract. In addition to the associated areas of the visual system, the vestibular and cochlear nuclei also contained dense GLUT5 immunoreactive puncta. Western blot analysis of the cerebellum indicated that the antibody used recognized the 33.5 and 37.0kDa bands that were also contained in jejunum and kidney extracts. Thus, these results suggest that GLUT5 may transport fructose in subsets of the glia and neurons for an energy source of these cells.
Collapse
Affiliation(s)
- Akiko Kojo
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Setagaya-ku, Tokyo 154-8568, Japan
| | - Kentaro Yamada
- Department of Oral Science, Division of Neuroscience and Brain Functions, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Toshiharu Yamamoto
- Department of Oral Science, Division of Neuroscience and Brain Functions, Kanagawa Dental University, Yokosuka 238-8580, Japan.
| |
Collapse
|
3
|
Pirchl M, Humpel C. Galactose counteracts hypoglycemia-induced decline of cholinergic neurons at low pH in organotypic rat brain slices of the basal nucleus of Meynert. Pharmacology 2011; 88:245-51. [PMID: 21997669 DOI: 10.1159/000331861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2011] [Accepted: 07/23/2011] [Indexed: 11/19/2022]
Abstract
A growing body of evidence indicates that hypoglycemia and acidosis may contribute to the development of Alzheimer's disease (AD). The cell death of basal forebrain cholinergic neurons constitutes a hallmark of AD and directly correlates with cognitive impairment. The aim of the present study was to investigate, in an organotypic rat brain slice model of the basal nucleus of Meynert, the effects of glucose deprivation on cholinergic neurons under normal and acidic conditions. Furthermore, we were interested to explore whether different saccharides (galactose, fructose, saccharose, lactose) can replace glucose under low pH conditions. Our data show a pH-dependent survival of cholinergic neurons at a high (37.1 mmol/l) glucose level, which was markedly decreased at a low (5.6 mmol/l) glucose level. Galactose (+31.5 mmol/l) significantly counteracted the loss of choline acetyltransferase-positive neurons in low-glucose-treated slices, while fructose, lactose and saccharose only partly protected cholinergic neurons. In conclusion, our results indicate that replacement of glucose with different saccharides, but most potently with galactose, protects cholinergic neurons against hypoglycemia at a low pH.
Collapse
Affiliation(s)
- Michael Pirchl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
4
|
Abstract
Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.
Collapse
Affiliation(s)
- Vincent A Funari
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
5
|
Meakin PJ, Fowler MJ, Rathbone AJ, Allen LM, Ransom BR, Ray DE, Brown AM. Fructose metabolism in the adult mouse optic nerve, a central white matter tract. J Cereb Blood Flow Metab 2007; 27:86-99. [PMID: 16670697 DOI: 10.1038/sj.jcbfm.9600322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
Our recent report that fructose supported the metabolism of some, but not all axons, in the adult mouse optic nerve prompted us to investigate in detail fructose metabolism in this tissue, a typical central white matter tract, as these data imply efficient fructose metabolism in the central nervous system (CNS). In artificial cerebrospinal fluid containing 10 mmol/L glucose or 20 mmol/L fructose, the stimulus-evoked compound action potential (CAP) recorded from the optic nerve consisted of three stable peaks. Replacing 10 mmol/L glucose with 10 mmol/L fructose, however, caused delayed loss of the 1st CAP peak (the 2nd and 3rd CAP peaks were unaffected). Glycogen-derived metabolic substrate(s) temporarily sustained the 1st CAP peak in 10 mmol/L fructose, as depletion of tissue glycogen by a prior period of aglycaemia or high-frequency CAP discharge rendered fructose incapable of supporting the 1st CAP peak. Enzyme assays showed the presence of both hexokinase and fructokinase (both of which can phosphorylate fructose) in the optic nerve. In contrast, only hexokinase was expressed in cerebral cortex. Hexokinase in optic nerve had low affinity and low capacity with fructose as substrate, whereas fructokinase displayed high affinity and high capacity for fructose. These findings suggest an explanation for the curious fact that the fast conducting axons comprising the 1st peak of the CAP are not supported in 10 mmol/L fructose medium; these axons probably do not express fructokinase, a requirement for efficient fructose metabolism.
Collapse
Affiliation(s)
- Paul J Meakin
- MRC Applied Neuroscience Group, School of Biomedical Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Braza-Boïls A, Tomás M, Marín MP, Megías L, Sancho-Tello M, Fornas E, Renau-Piqueras J. GLYCOSYLATION IS ALTERED BY ETHANOL IN RAT HIPPOCAMPAL CULTURED NEURONS. Alcohol Alcohol 2006; 41:494-504. [PMID: 16751217 DOI: 10.1093/alcalc/agl044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Glycoproteins, such as adhesion molecules and growth factors, participate in the regulation of nervous system development. Ethanol affects the synthesis, intracellular transport, distribution, and secretion of N-glycoproteins in different cell types, including astrocytes and hepatocytes, suggesting alterations in the glycosylation process. We analysed the effect of exposure to low doses of ethanol (30 mm, 7 days) on glycosylation in cultured hippocampal neurons. METHODS Neurons were incubated for short (5 min) and long (90 min) periods with the radioactively labelled carbohydrate precursors 2-deoxy-glucose, N-acetyl-D-mannosamine and mannose. The uptake and metabolism of these precursors, as well as the radioactivity distribution in protein gels, were analysed. The levels of the glucose transporters GLUT1 and GLUT3 were also determined. RESULTS Ethanol exposure reduces the synthesis of proteins, DNA and RNA and decreased the uptake of mannose, but not of 2-deoxy-glucose and N-acetyl-D-mannosamine, and it increased the protein levels of both glucose transporters. Moreover, it altered the carbohydrate moiety of several proteins. Finally, alcohol treatment results in an increment of cell surface glycoconjugates containing terminal non-reduced mannose. CONCLUSIONS Alcohol-induced alterations in glycosylation of proteins in neurons could be a key mechanism involved in the teratogenic effects of alcohol exposure on brain development.
Collapse
Affiliation(s)
- Aitana Braza-Boïls
- Section of Cell Biology and Pathology, Center for Investigation, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Funari VA, Herrera VLM, Freeman D, Tolan DR. Genes required for fructose metabolism are expressed in Purkinje cells in the cerebellum. ACTA ACUST UNITED AC 2005; 142:115-22. [PMID: 16266770 DOI: 10.1016/j.molbrainres.2005.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2005] [Revised: 09/22/2005] [Accepted: 09/26/2005] [Indexed: 11/30/2022]
Abstract
Since 1967, fructose has become the primary commercial sweetener in the food industry. Large amounts of fructose can be toxic and have been correlated with atherosclerosis, malabsorption, hyperuricemia, lactic acidosis, and cataracts. To understand the deleterious and critical role(s) fructose plays in normal metabolism, it is essential to know how and where fructose is metabolized. The fructose transporter, GLUT5, and the specialized enzymes ketohexokinase, aldolase, and triokinase comprise the well-defined fructose-specific metabolic pathway found in liver, kidney, and small intestine. It is estimated that 50-70% of ingested fructose is metabolized in these tissues; where and how the remaining 30-50% is metabolized is not well defined. Prediction of tissues capable of metabolizing fructose via this pathway was done using expressed sequence tags (ESTs) in Unigene and a gene-specific virtual northern blot (VNB) algorithm. Unigene and VNB combined correctly predicted the expression of the genes required for fructose metabolism in liver, kidney, and small intestine. Both methods indicated brain, breast, lymphocytes, muscle, placenta, and stomach additionally express this set of genes. Expression of the genes for GLUT5 (glut5) and ketohexokinase (khk) in neurons was validated by immunohistochemistry and RNA in situ hybridization, respectively. Using stringent controls, clear expression of glut5 and khk was localized to Purkinje cells in the cerebellum. Cerebellum was used to oxidize fructose to carbon dioxide. Together, these data suggest that these neurons in the brain are able to utilize fructose as a carbon source.
Collapse
Affiliation(s)
- Vincent A Funari
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
8
|
Miller CC, Martin RJ, Whitney ML, Edwards GL. Intracerebroventricular injection of fructose stimulates feeding in rats. Nutr Neurosci 2002; 5:359-62. [PMID: 12385599 DOI: 10.1080/1028415021000033839] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
2-deoxy-D-glucose (2DG) inhibits glycolysis and stimulates food intake. Previous work suggests that fructose may attenuate the hyperglycemic and hypothermic effects of 2DG. The current study examined the effect of intracerebroventricular fructose on 2DG-induced feeding. We found that concentrated fructose injected into the cerebroventricles enhanced food intake both in the presence and absence of 2DG. On the other hand, similar concentrations of glucose suppressed 2DG-induced food intake. These data suggest differences in metabolism of glucose and fructose and may provide insight into the metabolic steps monitored by brain glucoreceptors to control food intake.
Collapse
Affiliation(s)
- Cheryl C Miller
- Department of Foods and Nutrition, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
9
|
Rotta LN, Valle SC, Schweigert I, Ricardi LD, Ferronatto ME, da SL, Souza DO, Perry MLS. Utilization of energy nutrients by cerebellar slices. Neurochem Res 2002; 27:201-6. [PMID: 11958517 DOI: 10.1023/a:1014828419900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
We performed an ontogenetic study about the utilization of glycine, glutamine, beta-hydroxybutyrate and glycerol as energy nutrients by rat cerebellum slices. Production of CO2 from glycerol and glutamine increased with the animals' age and glutamine was the most used nutrient for CO2 production. In adult age, glutamine oxidation to CO2 was 15 to 35 times higher than all other nutrients studied. CO2 production from glycine decreased markedly with age and 10 day-old rats showed an oxidation 7.5 times higher than that of adult rats. At fetal age and at 10 postnatal days, glycine oxidation to CO2 was only 2 times lower than glutamine oxidation to CO2. Lipid synthesis from beta-hydroxybutyrate was highest in adult rats. We did not observe any difference in the utilization of beta-hydroxybutyrate between slices of cerebral cortex and cerebellum at the ages of 10 days and adult. The main nutrients used for lipid synthesis were glycerol and beta-hydroxybutyrate.
Collapse
Affiliation(s)
- Liane N Rotta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul-Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|