1
|
The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 2019; 94:285-294. [DOI: 10.1007/s12565-019-00486-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
2
|
Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Sci Rep 2018; 8:3979. [PMID: 29507421 PMCID: PMC5838102 DOI: 10.1038/s41598-018-22361-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma.
Collapse
Affiliation(s)
- Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Minh Huynh
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, 2006, New South Wales, Australia
| | - Matt R Kilburn
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
3
|
Wilson JP, Raghavan AS, Yang YY, Charron G, Hang HC. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics 2010; 10:M110.001198. [PMID: 21076176 DOI: 10.1074/mcp.m110.001198] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones.
Collapse
Affiliation(s)
- John P Wilson
- The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
4
|
Akerström S, Gunalan V, Keng CT, Tan YJ, Mirazimi A. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology 2009; 395:1-9. [PMID: 19800091 PMCID: PMC7111989 DOI: 10.1016/j.virol.2009.09.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/07/2009] [Accepted: 09/08/2009] [Indexed: 02/07/2023]
Abstract
Nitric oxide is an important molecule playing a key role in a broad range of biological process such as neurotransmission, vasodilatation and immune responses. While the anti-microbiological properties of nitric oxide-derived reactive nitrogen intermediates (RNI) such as peroxynitrite, are known, the mechanism of these effects are as yet poorly studied. Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) belongs to the family Coronaviridae, was first identified during 2002-2003. Mortality in SARS patients ranges from between 6 to 55%. We have previously shown that nitric oxide inhibits the replication cycle of SARS-CoV in vitro by an unknown mechanism. In this study, we have further investigated the mechanism of the inhibition process of nitric oxide against SARS-CoV. We found that peroxynitrite, an intermediate product of nitric oxide in solution formed by the reaction of NO with superoxide, has no effect on the replication cycle of SARS-CoV, suggesting that the inhibition is either directly effected by NO or a derivative other than peroxynitrite. Most interestingly, we found that NO inhibits the replication of SARS-CoV by two distinct mechanisms. Firstly, NO or its derivatives cause a reduction in the palmitoylation of nascently expressed spike (S) protein which affects the fusion between the S protein and its cognate receptor, angiotensin converting enzyme 2. Secondly, NO or its derivatives cause a reduction in viral RNA production in the early steps of viral replication, and this could possibly be due to an effect on one or both of the cysteine proteases encoded in Orf1a of SARS-CoV.
Collapse
Affiliation(s)
- Sara Akerström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Nobels Väg 18, Solna, Sweden
| | | | | | | | | |
Collapse
|
5
|
Hamel C, Millette E, Lamontagne D. Role of nitric oxide and protein kinase C in the tachyphylaxis to vasopressin in rat aortic rings. Life Sci 2005; 77:1069-81. [PMID: 15978263 DOI: 10.1016/j.lfs.2004.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 12/10/2004] [Indexed: 11/20/2022]
Abstract
The contribution of endothelium-derived mediators and protein kinase C in the tachyphylaxis to arginine vasopressin (AVP) was assessed in the rat aorta. Endothelium-intact (E+) and denuded rings (E-) obtained from the rat thoracic aorta were exposed to three administrations of a supramaximal concentration of AVP (100 nM), lasting 20 min and 45 min apart. N-Omega-nitro-L-arginine (NNLA), a non-selective inhibitor of all isoforms of NO synthase, and AMT, a selective inhibitor for the inducible (iNOS) and neuronal (nNOS) isoforms, diminished the tachyphylaxis to AVP significantly in both E+ and in E- rings. No iNOS could be detected by Western blots in freshly isolated rings or in rings exposed to AVP, despite a strong signal in rings isolated from LPS-treated rats, while nNOS could be constitutively detected. Inhibition of prostaglandins or epoxyeicosatrienoic acids (EETs) synthesis by diclofenac or clotrimazole, respectively, had no effect on tachyphylaxis while combination of these agents diminished tachyphylaxis in E+ only. Combination of NNLA, diclofenac and clotrimazole blocked completely the tachyphylaxis. Inhibition of PKC by either chelerythrine or bisindolylmaleimide I-HCl (BisI) led to a significant diminution of AVP tachyphylaxis only in E-. Activation of PKC with phorbol-12-myristate-13-acetate (PMA) simulated tachyphylaxis to AVP in E- only, effect blocked by the NO donor, SNP. In conclusion, NO produced from constitutive nNOS present in vascular smooth muscle cells participates in tachyphylaxis to AVP. PKC is involved in this tachyphylaxis only in E- rings, the presence of NO probably diminishing the effects of this kinase.
Collapse
Affiliation(s)
- Christine Hamel
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, Canada H3C 3J7
| | | | | |
Collapse
|
6
|
Bizzozero OA, DeJesus G, Bixler HA, Pastuszyn A. Evidence of Nitrosative Damage in the Brain White Matter of Patients with Multiple Sclerosis. Neurochem Res 2005; 30:139-49. [PMID: 15756942 DOI: 10.1007/s11064-004-9695-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) has been implicated in the pathophysiology of both experimental autoimmune encephalomyelitis and multiple sclerosis (MS). NO-mediated protein damage in MS appears to be confined to large plaques where 3-nitrotyrosine has been detected. To determine whether nitrosative damage takes place beyond visible MS plaques, the occurrence of various NO-triggered protein modifications in normal-appearing white matter (NAWM) of eight MS brains was assessed and compared to that in white matter (WM) of four control brains. As determined by amino acid analysis and western blotting, no evidence of tyrosine nitration was found in the MS samples studied, suggesting that they did not contain appreciable amounts of plaque-derived material. The amino acid composition of total myelin proteins and proteolipid protein (PLP) was also unaltered in the diseased tissue, as was the fatty acid composition of PLP. In addition, we detected no changes in the number of protein free thiols suggesting that oxidation do not occur to any appreciable extent. However, the levels of nitrite in MS-NAWM were higher than those in control WM, while in the MS-gray matter (GM) the concentration of this ion was unaltered. Furthermore, five of the MS samples analyzed, and the same as those with high levels of glial fibrilary acidic protein, showed increased amounts of protein nitrosothiols as determined by the "biotin switch" method. S-nitrosation of GM proteins was again normal. There was no indication of N-nitrosation of tryptophan and N-terminal amino groups in both control and MS tissue. Overall, the data suggests that WM, but not GM, from MS brains is subjected to considerable nitrosative stress. This is the first report to present direct evidence of increased protein S-nitrosation and nitrite content in the brain parenchyma of MS patients.
Collapse
Affiliation(s)
- Oscar A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Basic Medical Sciences Building, 914 Camino de Salud, Albuquerque, NM 87131-5218, USA.
| | | | | | | |
Collapse
|