1
|
Denner J. Risk of pathogenic virus transmission by somatic cell nuclear transfer (SCNT): implications for xenotransplantation. Biol Reprod 2022; 107:717-722. [PMID: 35699429 DOI: 10.1093/biolre/ioac120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Using somatic cell nuclear transfer (SCNT) for the generation of cloned and transgenic animals bears the risk of transmission of viruses, either by the oocyte or by the introduced donor cell. There is evidence that the zona pellucida (ZP) surrounding the oocyte prevents virus infection, however, virus infections despite intact ZP were reported. Furthermore, the protective ZP has to be penetrated in order to place the somatic cell in the oocyte's perivitelline space during SCNT. Transmission of viruses represents also a severe problem during in vitro fertilization (IVF). Genetically modified and IVF-produced pigs serve as an important biomedical model for numerous diseases and it is important to evaluate whether infections of the model animals can falsify the research data. Of special significance is this topic in the case of xenotransplantation using genetically modified pigs as donor animals, because transmission of porcine viruses may be harmful for the human recipient. This was repeatedly demonstrated in preclinical pig to non-human primate trials. Therefore, donor pigs, oocytes used for SCNT and genetically modified donor cells should be screened for potentially zoonotic viruses when creating genetically modified pigs designed for xenotransplantation.
Collapse
|
2
|
van der Kuyl AC, Berkhout B. Viruses in the reproductive tract: On their way to the germ line? Virus Res 2020; 286:198101. [PMID: 32710926 DOI: 10.1016/j.virusres.2020.198101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023]
Abstract
Studies of vertebrate genomes have indicated that all species contain in their chromosomes stretches of DNA with sequence similarity to viral genomes. How such 'endogenous' viral elements (EVEs) ended up in host genomes is usually explained in general terms such as 'they entered the germ line at some point during evolution'. This seems a correct statement, but is also rather imprecise. The vast number of endogenous viral sequences suggest that common routes to the 'germ line' may exist, as relying on chance alone may not easily explain the abundance of EVEs in modern mammalian genomes. An increasing number of virus types have been detected in human semen and a growing number of studies have reported on viral infections that cause male infertility or subfertility and on viral infections that threaten in vitro fertilisation practices. Thus, it is timely to survey the pathway(s) that viruses can use to gain access to the human germ line. Embryo transfer and semen quality studies in livestock form another source of relevant information because virus infection during reproduction is clearly unwanted, as is the case for the human situation. In this review, studies on viruses in the male and female reproductive tract and in the early embryo will be discussed to propose a plausible viral route to the mammalian germ line.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Annandale CH, Smuts MP, Ebersohn K, du Plessis L, Thompson PN, Venter EH, Stout TAE. Effect of using frozen-thawed bovine semen contaminated with lumpy skin disease virus on in vitro embryo production. Transbound Emerg Dis 2019; 66:1539-1547. [PMID: 30892826 DOI: 10.1111/tbed.13179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023]
Abstract
Lumpy skin disease (LSD) is an important transboundary animal disease of cattle with significant economic impact because of the implications for international trade in live animals and animal products. LSD is caused by a Capripoxvirus, LSD virus (LSDV), and results in extensive hide and udder damage, fever and pneumonia. LSDV can be shed in semen of infected bulls for prolonged periods and transmitted venereally to cows at high doses. This study examined the effects of LSDV in frozen-thawed semen on in vitro embryo production parameters, including viral status of media and resulting embryos. Bovine oocytes were harvested from abattoir-collected ovaries and split into three experimental groups. After maturation, the oocytes were fertilized in vitro with frozen-thawed semen spiked with a high (HD) or a lower (LD) dose of LSDV, or with LSDV-free semen (control). Following day 7 and day 8 blastocyst evaluation, PCR and virus isolation were performed on all embryonic structures. After completing sufficient replicates to reach 1,000 inseminated oocytes, further in vitro fertilization (IVF) runs were performed to provide material for electron microscopy (EM) and embryo washing procedures. Overall, in vitro embryo yield was significantly reduced by the presence of LSDV in frozen-thawed semen, irrespective of viral dose. When semen with a lower viral dose was used, significantly lower oocyte cleavage rates were observed. LSDV could be detected in fertilization media and all embryo structures, when higher doses of LSDV were present in the frozen-thawed semen used for IVF. Electron microscopy demonstrated LSDV virions inside blastocysts. Following the International Embryo Transfer Society washing procedure resulted in embryos free of viral DNA; however, this may be attributable to a sampling dilution effect and should be interpreted with caution. Further research is required to better quantify the risk of LSDV transmission via assisted reproductive procedures.
Collapse
Affiliation(s)
- Cornelius Henry Annandale
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Mario P Smuts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Karen Ebersohn
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Lizette du Plessis
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,School of Public Health, Medical and Veterinary Sciences, Discipline: Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Tom A E Stout
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Pellerin JL, Oseikria M, Moreno D, Rodolakis A, Vorimore F, Laroucau K, Bruyas JF, Roux C, Michaud S, Larrat M, Fieni F. Risk of Chlamydia abortus transmission via embryo transfer using in vitro produced early bovine embryos. Theriogenology 2018; 126:114-120. [PMID: 30551017 DOI: 10.1016/j.theriogenology.2018.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
The objectives of this study were to determine (i) whether Chlamydia (C.) abortus would adhere to the intact zona pellucida (ZP-intact) of early in vitro produced bovine embryos; (ii) whether the bacteria would adhere to the embryos (ZP-free) after in vitro infection; and (iii) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. The experimentation was made twice. For each replicate 100 (8-16-cell) bovine embryos produced in vitro were randomly divided into 10 batches. Height batches (4 ZP-intact and 4 ZP-free) of 10 embryos were incubated in a medium containing 4 × 107Chlamydia/ml of AB7 strain. After incubation for 18 h at 37 °C in an atmosphere of 5% CO2, the embryos were washed in accordance with the IETS guidelines. In parallel, two batches (1 ZP-intact and 1 ZP-free) of 10 embryos were subjected to similar procedures but without exposure to C. abortus as a control group. The 10 washing fluids from each batch were collected and centrifuged for 1 h at 13,000×g. Each batch of washed embryos and each wash pellets were tested using PCR. C. abortus DNA was found in all ZP-intact and ZP-free batches of 10 embryos after 10 successive washes. For ZP-intact infected embryos, Chlamydia-DNA was also detected in all 10 wash baths for two batches (2/8) of embryos, whereas for ZP-free infected embryos, Chlamydia-DNA was detected in all 10 wash baths for 6/8 batches of embryos. In contrast, none of the embryos or their washing fluids in the control batches was DNA positive. The bacterial load for batches of 10 embryos after the 10 wash baths was significantly higher for batches of ZP-free embryos (20.7 ± 9 × 103 bacteria/mL) than for batches of ZP-intact embryos (0.47 ± 0.19 × 103 bacteria/mL). These results demonstrate that C. abortus adheres to the ZP as well as the early embryonic cells of in vitro produced bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS fails to remove it.
Collapse
Affiliation(s)
- Jean-Louis Pellerin
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Mouhamad Oseikria
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Diego Moreno
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Annie Rodolakis
- INRA, Animal Infectious Diseases and Public Health Tours, France
| | - Fabien Vorimore
- ANSES, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Karine Laroucau
- ANSES, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Jean-Fancois Bruyas
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Cécile Roux
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Sandrine Michaud
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Myriam Larrat
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France
| | - Francis Fieni
- LUNAM University, Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, France.
| |
Collapse
|
5
|
Risk of equine infectious anemia virus disease transmission through in vitro embryo production using somatic cell nuclear transfer. Theriogenology 2009; 72:289-99. [DOI: 10.1016/j.theriogenology.2009.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/20/2009] [Accepted: 03/28/2009] [Indexed: 11/23/2022]
|
6
|
Wrathall AE, Simmons HA, Van Soom A. Evaluation of risks of viral transmission to recipients of bovine embryos arising from fertilisation with virus-infected semen. Theriogenology 2006; 65:247-74. [PMID: 16005506 DOI: 10.1016/j.theriogenology.2005.05.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/21/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
This scientific review was prompted by recent legislation to curtail the use of semen from potentially virus-infected bulls to produce embryos for import into the European Union. From studies in laboratory animals, humans and horses, it is apparent that viruses may sometimes attach to, or be integrated into, spermatozoa, although in domestic livestock, including cattle, this seems to be a rare phenomenon, and carriage of virus through the zona pellucida into the oocyte by fertilising sperm has never been described in these species. Four specific viruses; enzootic bovine leukosis (EBLV), bovine herpesvirus-1 (BoHV-1), bovine viral diarrhoea virus (BVDV) and bluetongue virus (BTV), all of which tend to cause subclinical infections in cattle, but which can occur in bovine semen, are examined with regard to the risks that use of infected semen might lead to production of infected embryos. With regard to in vivo-derived embryos, when internationally approved embryo processing protocols are used, the risks from EBLV- and BTV-infected semen are negligible, and the same is almost certainly true for semen infected with BoHV-1 if the embryos are also treated with trypsin. For BVDV, there is insufficient data on how the virus is carried in semen and how different BVDV strains can interact with sperm, oocytes and embryos. There is a potential, at least, that in vivo-derived embryos resulting from infected semen might carry BVDV, although field studies so far suggest that this is very unlikely. With regard to in vitro-produced embryos, use of semen infected with any of the four viruses, with the probable exception of EBLV, will often lead to contaminated embryos, and virus removal from these embryos is difficult even when the internationally approved embryo processing protocols are used. However, it has never been demonstrated that such embryos have resulted in transmission of infection to recipients or offspring.
Collapse
Affiliation(s)
- A E Wrathall
- Animal Services Unit, Veterinary Laboratories Agency, Woodham Lane, New Haw, Weybridge, Surrey KT15 3NB, UK.
| | | | | |
Collapse
|