1
|
Soares SC, Eler ES, E Silva CEF, da Silva MNF, Araújo NP, Svartman M, Feldberg E. LINE-1 and SINE-B1 mapping and genome diversification in Proechimys species (Rodentia: Echimyidae). Life Sci Alliance 2022; 5:5/6/e202101104. [PMID: 35304430 PMCID: PMC8932440 DOI: 10.26508/lsa.202101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to understand the impact of LINE-1 and SINE-B1 retroelements on the architecture and karyotypic diversification of five rodent species of the genus Proechimys from different regions of the Amazon. Karyotype comparisons were performed using fluorescent interspecific in situ hybridization. The L1 and B1 retroelements showed a non-random arrangement and a conserved pattern when the genomes of the five species of Proechimys were compared, including the two cytotypes of Proechimys guyannensis The signal homeology among the chromosomes and the degree of similarity among the formed clusters indicate rearrangements such as fusion/fission, and demonstrates that these retroelements can behave as derived characters shared in Proechimys The differentiated distribution and organization of these retroelements in the karyotypes and in the chromosomal fiber, respectively, may represent a strong indication of their role as generating sources of karyotypic diversity in the genus Proechimys and provide insights into the evolutionary relationships between taxa.
Collapse
Affiliation(s)
- Simone Cardoso Soares
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil .,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eduardo Schmidt Eler
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Carlos Eduardo Faresin E Silva
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Naiara Pereira Araújo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Rondônia campus Jaru, Jaru, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliana Feldberg
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
2
|
de Sene VF, Pansonato-Alves JC, Ferreira DC, Utsunomia R, Oliveira C, Foresti F. Mapping of the Retrotransposable Elements Rex1 and Rex3 in Chromosomes of Eigenmannia (Teleostei, Gymnotiformes, Sternopygidae). Cytogenet Genome Res 2015; 146:319-24. [DOI: 10.1159/000441465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Transposable elements constitute a remarkable fraction of the eukaryote genome and show particular capacity to move and insert in specific regions of the genome. This study identified the retrotransposable elements Rex1 and Rex3 in the genomes of 6 cytotypes of Eigenmannia. The sequences were isolated by PCR, sequenced and physically mapped in the chromosomes of these cytotypes, aiming to investigate the organization and distribution of these elements in this fish group, mainly in the sex chromosomes. The FISH physical mapping revealed that both Rex1 and Rex3 elements are dispersed in small clusters throughout the chromosomes of all cytotypes analyzed. However, conspicuous blocks occur in several samples, including an accentuated accumulation of the Rex3 element in X1 and X2 chromosomes of Eigenmannia sp. 2 and in the X chromosome of E. virescens. The accumulations are coincident with heterochromatin-rich regions, suggesting that Rex3 played a role in the differentiation process of the sex chromosomes.
Collapse
|
3
|
Utsunomia R, Pansonato-Alves JC, Scacchetti PC, Oliveira C, Foresti F. Scattered organization of the histone multigene family and transposable elements in Synbranchus. Genet Mol Biol 2013; 37:30-6. [PMID: 24688288 PMCID: PMC3958323 DOI: 10.1590/s1415-47572014000100007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 11/21/2022] Open
Abstract
The fish species Synbranchus marmoratus is widely distributed throughout the Neotropical region and exhibits a significant karyotype differentiation. However, data concerning the organization and location of the repetitive DNA sequences in the genomes of these karyomorphs are still lacking. In this study we made a physical mapping of the H3 and H4 histone multigene family and the transposable elements Rex1 and Rex3 in the genome of three known S. marmoratus karyomorphs. The results indicated that both histone sequences seem to be linked with one another and are scattered all over the chromosomes of the complement, with a little compartmentalization in one acrocentric pair, which is different from observations in other fish groups. Likewise, the transposable elements Rex1 and Rex3 were also dispersed throughout the genome as small clusters. The data also showed that the histone sites are organized in a differentiated manner in the genomes of S. marmoratus, while the transposable elements Rex1 and Rex3 do not seem to be compartmentalized in this group.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Priscilla Cardim Scacchetti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
4
|
Ferreira DC, Porto-Foresti F, Oliveira C, Foresti F. Transposable elements as a potential source for understanding the fish genome. Mob Genet Elements 2011; 1:112-117. [PMID: 22016858 DOI: 10.4161/mge.1.2.16731] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/11/2011] [Accepted: 05/30/2011] [Indexed: 12/24/2022] Open
Abstract
Transposable elements are repetitive sequences with the capacity tomove inside of the genome. They constitute the majority of the eukaryotic genomes, and are extensively present in the human genome, representing more than 45% of the genome sequences. The knowledge of the origin and function of these elements in the fish genome is still reduced and fragmented, mainly with regard to its structure and organization in the chromosomes of the representatives of this biological group, with data currently available for very few species that represent the great variety of forms and existing diversity. Comparative analyses ascertain differences in the organization of such elements in the species studied up to the present. They can be part of the heterochromatic regions in some species or be spread throughout the genome in others. The main objective of the present revision is to discuss the aspects of the organization of transposable elements in the fish genome.
Collapse
Affiliation(s)
- Daniela Cristina Ferreira
- Departamento de Morfologia; Instituto de Biociência; Universidade Estadual Paulista; Bauru, SP Brazil
| | | | | | | |
Collapse
|
5
|
Martinez PA, de Araujo WC, Molina WF. Derived cytogenetic traits, multiple NORs and B chromosomes in the compact karyotype of Canthigaster figueiredoi (Tetraodontiformes). Mar Genomics 2010; 3:85-9. [DOI: 10.1016/j.margen.2010.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
6
|
Noleto RB, Vicari MR, Cipriano RR, Artoni RF, Cestari MM. Physical mapping of 5S and 45S rDNA loci in pufferfishes (Tetraodontiformes). Genetica 2006; 130:133-8. [PMID: 16897445 DOI: 10.1007/s10709-006-9000-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 07/01/2006] [Indexed: 11/28/2022]
Abstract
Chromosomal features, location and variation of the major and minor rDNA genes cluster were studied in three pufferfish species: Sphoeroides greeleyi and Sphoeroides testudineus (Tetraodontidae) and Cyclichthys spinosus (Diodontidae). The location of the major rDNA was revealed with an 18S probe in two loci for all species. The minor rDNA loci (5S rDNA) was found in one chromosome pair in tetraodontid fishes and four sites located on two distinct chromosomal pairs in C. spinosus. A syntenical organization was not observed among the ribosomal genes. Signal homogeneity for GC/AT-DNA specific fluorochromes was observed in diodontid fish except in the NORs regions, which were CMA3-positive. Giemsa karyotypes of tetraodontid species presents 2n=46, having the same diploid value of other Sphoeroides species that have been investigated. On the other hand, the karyotype of C. spinosus, described for the first time, shows 2n=50 chromosomes (4m+18sm+12st+16a). The foreknowledge of the karyotypic structure of this group and also the physical mapping of certain genes could be very helpful for further DNA sequence analysis.
Collapse
Affiliation(s)
- Rafael Bueno Noleto
- Departamento de Genética, Centro Politécnico, Universidade Federal do Paraná, Caixa Postal 19071, 81531-990, Curitiba, PR, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Sinzelle L, Chesneau A, Bigot Y, Mazabraud A, Pollet N. The mariner Transposons Belonging to the irritans Subfamily Were Maintained in Chordate Genomes by Vertical Transmission. J Mol Evol 2006; 62:53-65. [PMID: 16408242 DOI: 10.1007/s00239-005-0013-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Mariner-like elements (MLEs) belong to the Tc1-mariner superfamily of DNA transposons, which is very widespread in animal genomes. We report here the first complete description of a MLE, Xtmar1, within the genome of a poikilotherm vertebrate, the amphibian Xenopus tropicalis. A close relative, XlMLE, is also characterized within the genome of a sibling species, Xenopus laevis. The phylogenetic analysis of the relationships between MLE transposases reveals that Xtmar1 is closely related to Hsmar2 and Bytmar1 and that together they form a second distinct lineage of the irritans subfamily. All members of this lineage are also characterized by the 36- to 43-bp size of their imperfectly conserved inverted terminal repeats and by the -8-bp motif located at their outer extremity. Since XlMLE, Xlmar1, and Hsmar2 are present in species located at both extremities of the vertebrate evolutionary tree, we looked for MLE relatives belonging to the same subfamily in the available sequencing projects using the amino acid consensus sequence of the Hsmar2 transposase as an in silico probe. We found that irritans MLEs are present in chordate genomes including most craniates. This therefore suggests that these elements have been present within chordate genomes for 750 Myr and that the main way they have been maintained in these species has been via vertical transmission. The very small number of stochastic losses observed in the data available suggests that their inactivation during evolution has been very slow.
Collapse
Affiliation(s)
- Ludivine Sinzelle
- Transgenèse et Génétique des Amphibiens, CNRS UMR 8080, IBAIC, Université Paris-Sud, Bâtiment 447, Orsay Cedex, F-91405, France
| | | | | | | | | |
Collapse
|