1
|
Sterea AM, Egom EE, El Hiani Y. TRP channels in gastric cancer: New hopes and clinical perspectives. Cell Calcium 2019; 82:102053. [PMID: 31279156 DOI: 10.1016/j.ceca.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a multifactorial disease associated with a combination of and environmental factors. Each year, one million new gastric cancer cases are diagnosed worldwide and two-thirds end up losing the battle with this devastating disease. Currently, surgery represents the only effective treatment option for patients with early stage tumors. However, the asymptomatic phenotype of this disease during the early stages poses as a significant limiting factor to diagnosis and often renders treatments ineffective. To address these issues, scientists are focusing on personalized medicine and discovering new ways to treat cancer patients. Emerging therapeutic options include the transient receptor potential (TRP) channels. Since their discovery, TRP channels have been shown to contribute significantly to the pathophysiology of various cancers, including gastric cancer. This review will summarize the current knowledge about gastric cancer and provide a synopsis of recent advancements on the role and involvement of TRP channels in gastric cancer as well as a discussion of the benefits of targeting TPR channel in the clinical management of gastric cancer.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Yamamoto A, Takahashi K, Saito S, Tominaga M, Ohta T. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms. Neuropharmacology 2016; 111:130-141. [DOI: 10.1016/j.neuropharm.2016.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
|
3
|
Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 2013; 77:667-79. [PMID: 23439120 DOI: 10.1016/j.neuron.2012.12.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/20/2023]
Abstract
The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP(2)), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP(2), PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other "receptor-operated" TRP channels.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Cough is a troublesome symptom associated with many respiratory diseases. In some instances cough can become prolonged and excessive, and chronic cough of various aetiologies is a common presentation to specialist respiratory clinics. However, current treatment options are limited. Despite its importance, our understanding of the mechanisms that provoke cough is poor. Recent investigation has focused on the interaction between G-protein-coupled receptors and ion channels expressed on airway sensory nerves that are responsible for driving the cough reflex. In particular, the Transient Receptor Potential class of ion channels appears to play a major role as a regulator of the afferent arm of the cough reflex and could be involved in the heightened cough response observed in disease states. Current research investigating the pathogenesis of cough supports the development of TRP channel inhibitors as novel and selective treatment modalities.
Collapse
|
5
|
Advances in research of mammalian vomeronasal pheromone perception and genetic components unique to vomeronasal signal transduction pathway. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Abstract
Transient receptor potential ankyrin subfamily member 1 (TRPA1) is a nonselective cation channel known as a noxious cold-activated ion channel. Recent findings implicated its involvement in acute and chronic cold nociception processes. Here, we investigated whether TRPA1 is involved in endothelin-1 (ET-1)-induced spontaneous pain-like behavior in C57BL/6J mice. We found that TRPA1 antagonists, HC-030031 and AP18, significantly reduced the pain-like behavior caused by ET-1. AP18 also significantly reduced the pain caused by cinnamaldehyde, an agonist of TRPA-1. However, AP18 did not alleviate the pain caused by capsaicin. The pain-like behavior caused by ET-1 was inhibited by phospholipase C inhibitor, but not by protein kinase C inhibitor. Low dose of ET-1 could potentiate cinnamaldehyde-induced nociception. Our results suggested that TRPA1 is involved in ET-1-induced spontaneous pain-like behavior in mice.
Collapse
|
7
|
Tsui MM, York JD. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. ACTA ACUST UNITED AC 2009; 50:324-37. [PMID: 20006638 DOI: 10.1016/j.advenzreg.2009.12.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marco M Tsui
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Box 3813, Durham, NC 27710, USA
| | | |
Collapse
|
8
|
Abstract
Lipids from dietary sources or from de novo synthesis are transported while bound to proteins to other tissues where they are used for cell membrane synthesis or stored for energy generation. In cell membranes or in plasma, lipids can undergo several modifications that are important in cell function. Several proteins orchestrate the transport, biosynthesis, and modification of lipids. Thus, the intersection of lipids and proteins is important in human metabolic pathways. Recent advances in mass spectrometry and bioinformatics have made it possible to obtain compositional (structural and functional) data of lipid molecular species and proteins in biological samples. This combination of lipidomics and proteomics is advantageous because it allows us to better define biochemical pathways, discover new drug targets, and better understand the pathophysiology of several diseases.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | | |
Collapse
|
9
|
Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. ACTA ACUST UNITED AC 2008; 131:1241-51. [PMID: 18356188 DOI: 10.1093/brain/awn060] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bradykinin is an inflammatory mediator that plays a pivotal role in pain and hyperalgesia in inflamed tissues by exciting and/or sensitizing nociceptors. TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain. Here, using electrophysiological, immunocytochemical and behavioural analyses, we showed a functional interaction of these two inflammation-related molecules in both heterologous expressing systems and primary sensory neurons. We found that bradykinin increased the TRPA1 currents evoked by allyl isothiocyanate (AITC) or cinnamaldehyde in HEK293 cells expressing TRPA1 and bradykinin receptor 2 (B2R). This potentiation was inhibited by phospholipase C (PLC) inhibitor or protein kinase A (PKA) inhibitor, and mimicked by PLC or PKA activator. The functional interaction between B2R and TRPA1, as well as the modulation mechanism, was also observed in rat dorsal root ganglia neurons. In an occlusion experiment, the PLC activator could enhance AITC-induced TRPA1 current further even in saturated PKA-mediated potentiation, indicating the additive potentiating effects of the PLC and PKA pathways. These data for the first time indicate that a cAMP-PKA signalling is involved in the downstream from B2R in dorsal root ganglia neurons in addition to PLC. Finally, subcutaneous pre-injection of a sub-inflammatory dose of bradykinin into rat hind paw enhanced AITC-induced pain behaviours, which was consistent with the observations in vitro. Collectively, these results represent a novel mechanism through which bradykinin released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 2007; 117:1979-87. [PMID: 17571167 PMCID: PMC1888570 DOI: 10.1172/jci30951] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/10/2007] [Indexed: 12/17/2022] Open
Abstract
Proinflammatory agents trypsin and mast cell tryptase cleave and activate PAR2, which is expressed on sensory nerves to cause neurogenic inflammation. Transient receptor potential A1 (TRPA1) is an excitatory ion channel on primary sensory nerves of pain pathway. Here, we show that a functional interaction of PAR2 and TRPA1 in dorsal root ganglion (DRG) neurons could contribute to the sensation of inflammatory pain. Frequent colocalization of TRPA1 with PAR2 was found in rat DRG neurons. PAR2 activation increased the TRPA1 currents evoked by its agonists in HEK293 cells transfected with TRPA1, as well as DRG neurons. Application of phospholipase C (PLC) inhibitors or phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppressed this potentiation. Decrease of plasma membrane PIP(2) levels through antibody sequestration or PLC-mediated hydrolysis mimicked the potentiating effects of PAR2 activation at the cellular level. Thus, the increased TRPA1 sensitivity may have been due to activation of PLC, which releases the inhibition of TRPA1 from plasma membrane PIP(2). These results identify for the first time to our knowledge a sensitization mechanism of TRPA1 and a novel mechanism through which trypsin or tryptase released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Shenglan Wang
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Makoto Tominaga
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Satoshi Yamamoto
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Tomohiro Higashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
11
|
Cantiello HF, Montalbetti N, Li Q, Chen XZ. The Cytoskeletal Connection to Ion Channels as a Potential Mechanosensory Mechanism: Lessons from Polycystin-2 (TRPP2). CURRENT TOPICS IN MEMBRANES 2007; 59:233-96. [PMID: 25168140 DOI: 10.1016/s1063-5823(06)59010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mechanosensitivity of ion channels, or the ability to transfer mechanical forces into a gating mechanism of channel regulation, is split into two main working (not mutually exclusive) hypotheses. One is that elastic and/or structural changes in membrane properties act as a transducing mechanism of channel regulation. The other hypothesis involves tertiary elements, such as the cytoskeleton which, itself by dynamic interactions with the ion channel, may convey conformational changes, including those ascribed to mechanical forces. This hypothesis is supported by numerous instances of regulatory changes in channel behavior by alterations in cytoskeletal structures/interactions. However, only recently, the molecular nature of these interactions has slowly emerged. Recently, a surge of evidence has emerged to indicate that transient receptor potential (TRP) channels are key elements in the transduction of a variety of environmental signals. This chapter describes the molecular linkage and regulatory elements of polycystin-2 (PC2), a TRP-type (TRPP2) nonselective cation channel whose mutations cause autosomal dominant polycystic kidney disease (ADPKD). The chapter focuses on the involvement of cytoskeletal structures in the regulation of PC2 and discusses how these connections are the transducing mechanism of environmental signals to its channel function.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, Charlestown, Massachusetts 02129; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Nicolás Montalbetti
- Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Qiang Li
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
12
|
Fatherazi S, Presland RB, Belton CM, Goodwin P, Al-Qutub M, Trbic Z, Macdonald G, Schubert MM, Izutsu KT. Evidence that TRPC4 supports the calcium selective I(CRAC)-like current in human gingival keratinocytes. Pflugers Arch 2006; 453:879-89. [PMID: 17031666 DOI: 10.1007/s00424-006-0156-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/09/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
We previously demonstrated that high external [Ca(2+)] activated two Ca(2+) currents in human gingival keratinocytes (HGKs): an initial small I(CRAC)-like current and a second large nonspecific cation current (Fatherazi S, Belton CM, Cai S, Zarif S, Goodwin PC, Lamont RJ, Izutsu KT; Pflugers Arch 448:93-104, 2004). It was recently shown that TRPC1, a member of the transient receptor potential protein family, is a component of the store-operated calcium entry mechanism in keratinocytes. To further elucidate the molecular identity of these channels, we investigated the expression of TRPC4 in gingival tissue and in cultured keratinocytes, and the effect of knockdown of TRPC4 expression on the Ca(2+) currents and influx. Immunohistochemistry showed TRPC4 was present in gingival epithelium as well as in HGKs cultured in different [Ca(2+)]s. Results from tissue and cultured HGKs demonstrated TRPC4 expression decreased with differentiation. Knockdown of TRPC4 in proliferating HGKs with antisense oligonucleotides significantly reduced the intracellular [Ca(2+)] increase obtained upon exposure to high external [Ca(2+)]. Antisense knockdown of TRPC4 expression was confirmed by reverse transcriptase polymerase chain reaction, Western blot, and immunofluorescence microscopy of transfected HGKs. Immunofluorescence microscopy and patch clamp measurements in Lucifer-yellow-tagged, antisense-treated HGKs showed attenuation of TRPC4 expression levels as well as attenuation of the I(CRAC)-like current in the same cell, whereas the large nonspecific cation current was unchanged but significantly delayed. Cells transfected with a scrambled TRPC4 oligonucleotide showed no change in either the I(CRAC)-like or nonspecific currents. The results indicate that TRPC4 is an important component of the I(CRAC)-like channel in HGKs.
Collapse
Affiliation(s)
- Sahba Fatherazi
- Department of Oral Biology, University of Washington, Seattle, WA 98195-7132, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kiselyov K, Kim JY, Zeng W, Muallem S. Protein-protein interaction and functionTRPC channels. Pflugers Arch 2005; 451:116-24. [PMID: 16044307 DOI: 10.1007/s00424-005-1442-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 11/28/2022]
Abstract
Since their identification in the concluding years of the last century, the mammalian transient receptor potential (canonical) (TRPC) channels have remained in the limelight as the primary candidates for the Ca(2+) entry pathway activated by the hormones, growth factors, and neurotransmitters that exert their effect through activation of PLC. Although TRPC channels have been shown clearly to mediate, at least in part, receptor-activated Ca(2+) entry in literally all cell types, several of their central characteristics, as recorded in expression systems using recombinant channels, differ from those of the native receptor-dependent Ca(2+) influx channels. The present review attempts to highlight the interaction of TRPC channels with other proteins, which may explain the variability of TRPC channel activation and regulatory mechanisms observed with the native and recombinant channels. These include the homologous and heterotopous interactions of TRPC channel isoforms, the interaction of TRPC channels with calmodulin, PLCgamma, IP(3) receptors, and with scaffolding proteins like InaD, EBP50/NEHRF, caveolin, Janctate and Homers.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
14
|
Wang J, Kean L, Yang J, Allan AK, Davies SA, Herzyk P, Dow JAT. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol 2004; 5:R69. [PMID: 15345053 PMCID: PMC522876 DOI: 10.1186/gb-2004-5-9-r69] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/25/2004] [Accepted: 07/23/2004] [Indexed: 11/25/2022] Open
Abstract
Analysis of the transcriptome of the Drosophila melanogaster Malpighian (renal) tubule gives a radically new view of the function of the tubule, emphasising solute transport rather than fluid secretion. Background Comprehensive, tissue-specific, microarray analysis is a potent tool for the identification of tightly defined expression patterns that might be missed in whole-organism scans. We applied such an analysis to Drosophila melanogaster Malpighian (renal) tubule, a defined differentiated tissue. Results The transcriptome of the D. melanogaster Malpighian tubule is highly reproducible and significantly different from that obtained from whole-organism arrays. More than 200 genes are more than 10-fold enriched and over 1,000 are significantly enriched. Of the top 200 genes, only 18 have previously been named, and only 45% have even estimates of function. In addition, 30 transcription factors, not previously implicated in tubule development, are shown to be enriched in adult tubule, and their expression patterns respect precisely the domains and cell types previously identified by enhancer trapping. Of Drosophila genes with close human disease homologs, 50 are enriched threefold or more, and eight enriched 10-fold or more, in tubule. Intriguingly, several of these diseases have human renal phenotypes, implying close conservation of renal function across 400 million years of divergent evolution. Conclusions From those genes that are identifiable, a radically new view of the function of the tubule, emphasizing solute transport rather than fluid secretion, can be obtained. The results illustrate the phenotype gap: historically, the effort expended on a model organism has tended to concentrate on a relatively small set of processes, rather than on the spread of genes in the genome.
Collapse
Affiliation(s)
- Jing Wang
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Laura Kean
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Jingli Yang
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Adrian K Allan
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Shireen A Davies
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Pawel Herzyk
- Sir Henry Wellcome Functional Genomics Facility, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian AT Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| |
Collapse
|
15
|
Abstract
Autosomal dominant PKD (ADPKD) is a common lethal genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other target organs. ADPKD is caused by mutations in the PKD1 and PKD2 genes, encoding the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Although the function and putative interacting ligands of PC1 are largely unknown, recent evidence indicates that PC2 behaves as a TRP-type Ca2+-permeable nonselective cation channel. The PC2 channel is implicated in the transient increase in cytosolic Ca2+in renal epithelial cells and may be linked to the activation of subsequent signaling pathways. Recent studies also indicate that PC1 functionally interacts with PC2 such that the PC1-PC2 channel complex is an obligatory novel signaling pathway implicated in the transduction of environmental signals into cellular events. The present review purposely avoids issues of regulation of PC2 expression and trafficking and focuses instead on the evidence for the TRP-type cation channel function of PC2. How its role as a cation channel may unmask mechanisms that trigger Ca2+transport and regulation is the focus of attention. PC2 channel function may be essential in renal cell function and kidney development. Nonrenal-targeted expression of PC2 and related proteins, including the cardiovascular system, also suggests previously unforeseeable roles in signal transduction.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, 149 13th St., Charlestown, MA 02129, USA.
| |
Collapse
|
16
|
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin. Neuron 2004; 41:849-57. [PMID: 15046718 DOI: 10.1016/s0896-6273(04)00150-3] [Citation(s) in RCA: 1375] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 02/18/2004] [Accepted: 03/04/2004] [Indexed: 11/23/2022]
Abstract
Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.
Collapse
Affiliation(s)
- Michael Bandell
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gore A, Moran A, Hershfinkel M, Sekler I. Inhibitory mechanism of store-operated Ca2+ channels by zinc. J Biol Chem 2004; 279:11106-11. [PMID: 14715648 DOI: 10.1074/jbc.m400005200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capacitative calcium influx plays an important role in shaping the Ca(2+) response of various tissues and cell types. Inhibition by heavy metals is a hallmark of store-operated calcium channel (SOCC) activity. Paradoxically, although zinc is the only potentially physiological relevant ion, it is the least investigated in terms of inhibitory mechanism. In the present study, we characterize the inhibitory mechanism of the SOCC by Zn(2+) in the human salivary cell line, HSY, and rat salivary submandibular ducts and acini by monitoring SOCC activity using fluorescence imaging. Analysis of Zn(2+) inhibition indicated that Zn(2+) acts as a competitive inhibitor of Ca(2+) influx but does not permeate through the SOCC, suggesting that Zn(2+) interacts with an extracellular site of SOCC. Application of the reducing agents, dithiothreitol (DTT) and beta-mercaptoethanol, totally eliminated Zn(2+) and Cd(2+) inhibition of SOCC, suggesting that cysteines are part of the Zn(2+) and Cd(2+) binding site. Interestingly, reducing conditions failed to eliminate the inhibition of SOCC by La(3+) and Gd(3+), indicating that the Zn(2+) and lanthanides binding sites are distinct. Finally, we show that changes in redox potential and Zn(2+) are regulating, via SOCC activity, the agonist-induced Ca(2+) response in salivary ducts. The presence of a specific Zn(2+) site, responsive to physiological Zn(2+) and redox potential, may not only be instrumental for future structural studies of various SOCC candidates but may also reveal novel physiological aspects of the interaction between zinc, redox potential, and cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Ariel Gore
- Physiology and Morphology, Faculty of Health Science and the Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | | | | | | |
Collapse
|
18
|
Abstract
A contentious issue in taste research might have come to a close. Zhang et al., in this issue of Cell, provide broad support for the notion that the recognition of sweet, umami, and bitter tastes use the same signaling molecules. Moreover, they show that individual taste cells are dedicated to the transduction of only one of these three taste qualities.
Collapse
Affiliation(s)
- Hubert Amrein
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 252 CARL Bldg/Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
19
|
Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJP. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003; 112:293-301. [PMID: 12581520 DOI: 10.1016/s0092-8674(03)00071-0] [Citation(s) in RCA: 906] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.
Collapse
Affiliation(s)
- Yifeng Zhang
- Howard Hughes Medical Institute, Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|