1
|
El-Salhy M, Gilja OH. Abnormalities in ileal stem, neurogenin 3, and enteroendocrine cells in patients with irritable bowel syndrome. BMC Gastroenterol 2017; 17:90. [PMID: 28764761 PMCID: PMC5539900 DOI: 10.1186/s12876-017-0643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background This study examined whether the densities of stem- and enteroendocrine cell progenitors are abnormal in the ileum of patients with irritable bowel syndrome (IBS), and whether any abnormalities in ileal enteroendocrine cells are correlated with abnormalities in stem cells and enteroendocrine cell progenitors. Methods One hundred and one IBS patients covering all IBS subtypes were recruited, and 39 non-IBS subjects were included as a control group. The patients and controls underwent standard colonoscopies, during which biopsy specimens were obtained from the ileum. The biopsy specimens were stained with hematoxylin-eosin and immunostained for Musashi-1 (Msi-1), neurogenin 3 (NEUROG3), chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin (enteroglucagon), pancreatic polypeptide, and somatostatin. The immunoreactive cells were quantified by computerized image analysis. Results The densities of Msi-1, NEUROG3, CgA, and serotonin cells were reduced in all IBS patients and in patients with diarrhea-predominant IBS (IBS-D), mixed-diarrhea-and-constipation IBS (IBS-M), and constipation-predominant (IBS-C) relative to the control subjects. While the PYY cell density was increased in IBS-C relative to controls, it did not differ between control subjects and IBS-D and IBS-M patients. The densities of Msi-1 and NEUROG3 cells were strongly correlated with that of CgA cells. Conclusions The abnormalities in the ileal enteroendocrine cells appear to be caused by two mechanisms: (1) decreases in the clonogenic activity of the stem cells and in the endocrine-cell progenitors differentiating into enteroendocrine cells, and (2) switching on the expression of PYY and switching off the expression of certain other hormones in other types of the enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Box 4000, 54 09 Stord, Stord, Norway. .,Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Odd Helge Gilja
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome (Review). Int J Mol Med 2017; 40:607-613. [PMID: 28731144 PMCID: PMC5548066 DOI: 10.3892/ijmm.2017.3072] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder. It is widely believed that IBS is caused by a deficient intake of dietary fiber, and most physicians recommend that patients with IBS increase their intake of dietary fiber in order to relieve their symptoms. However, different types of dietary fiber exhibit marked differences in physical and chemical properties, and the associated health benefits are specific for each fiber type. Short-chain soluble and highly fermentable dietary fiber, such as oligosaccharides results in rapid gas production that can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence in patients with IBS. By contrast, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber, such as psyllium results in a low gas production and the absence of the symptoms related to excessive gas production. The effects of type of fiber have been documented in the management of IBS, and it is known to improve the overall symptoms in patients with IBS. Dietary fiber acts on the gastrointestinal tract through several mechanisms, including increased fecal mass with mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis, and the actions of fermentation byproducts, particularly short-chain fatty acids, on the intestinal microbiota, immune system and the neuroendocrine system of the gastrointestinal tract. Fiber supplementation, particularly psyllium, is both safe and effective in improving IBS symptoms globally. Dietary fiber also has other health benefits, such as lowering blood cholesterol levels, improving glycemic control and body weight management.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Synne Otterasen Ystad
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| | - Tarek Mazzawi
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Doris Gundersen
- Department of Research and Innovation, Helse-Fonna, 5528 Haugesund, Norway
| |
Collapse
|
3
|
El-Salhy M, Gilja OH, Gundersen D, Hatlebakk JG, Hausken T. Endocrine cells in the ileum of patients with irritable bowel syndrome. World J Gastroenterol 2014; 20:2383-91. [PMID: 24605036 PMCID: PMC3942842 DOI: 10.3748/wjg.v20.i9.2383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/20/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To study the ileal endocrine cell types in irritable bowel syndrome (IBS) patients. METHODS Ninety-eight patients with IBS (77 females and 21 males; mean age 35 years, range 18-66 years) were included, of which 35 patients had diarrhea (IBS-D), 31 patients had a mixture of both diarrhea and constipation (IBS-M), and 32 patients had constipation (IBS-C) as the predominant symptoms. The controls were 38 subjects (26 females and 12 males; mean age 40 years, range 18-65 years) who had submitted to colonoscopy for the following reasons: gastrointestinal bleeding, where the source of bleeding was identified as hemorrhoids (n = 24) or angiodysplasia (n = 3), and health worries resulting from a relative being diagnosed with colon carcinoma (n = 11). The patients were asked to complete the: Birmingham IBS symptom questionnaire. Ileal biopsy specimens from all subjects were immunostained using the avidin-biotin-complex method for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), enteroglucagon, and somatostatin cells. The cell densities were quantified by computerized image analysis, using Olympus cellSens imaging software. RESULTS The gender and age distributions did not differ significantly between the patients and the controls (P = 0.27 and P = 0.18, respectively). The total score of Birmingham IBS symptom questionnaire was 21 ± 0.8, and the three underlying dimensions: pain, diarrhea, and constipation were 7.2 ± 0.4, 6.6 ± 0.4, and 7.2 ± 0.4, respectively. The density of serotonin cells in the ileum was 40.6 ± 3.6 cells/mm² in the controls, and 11.5 ± 1.2, 10.7 ± 5.6, 10.0 ± 1.9, and 13.9 ± 1.4 cells/mm² in the all IBS patients (IBS-total), IBS-D, IBS-M, and IBS-C patients, respectively. The density in the controls differed significantly from those in the IBS-total, IBS-D, IBS-M, and IBS-C groups (P < 0.0001, P = 0.0001, P = 0.0001, and P < 0.0001, respectively). There was a significant inverse correlation between the serotonin cell density and the pain dimension of Birmingham IBS symptom questionnaire (r = -0.6, P = 0.0002). The density of PYY cells was 26.7 ± 1.6 cells/mm(2) in the controls, and 33.1 ± 1.4, 27.5 ± 1.4, 34.1 ± 2.5, and 41.7 ± 3.1 cells/mm² in the IBS-total, IBS-D, IBS-M, and IBS-C patients, respectively. This density differed significantly between patients with IBS-total and IBS-C and the controls (P = 0.03 and < 0.0001, respectively), but not between controls and, IBS-D, and IBS-M patients (P = 0.8, and P = 0.1, respectively). The density of PYY cells correlated significantly with the degree of constipation as recorded by the Birmingham IBS symptom questionnaire (r = 0.6, P = 0.0002). There were few PP-, enteroglucagon-, and somatostatin-immunoreactive cells in the biopsy material examined, which made it impossible to reliably quantify these cells. CONCLUSION The decrease of ileal serotonin cells is associated with the visceral hypersensitivity seen in all IBS subtypes. The increased density of PYY cells in IBS-C might contribute to the constipation experienced by these patients.
Collapse
|
4
|
El-Salhy M, Gundersen D, Hatlebakk JG, Gilja OH, Hausken T. Abnormal rectal endocrine cells in patients with irritable bowel syndrome. REGULATORY PEPTIDES 2014; 188:60-5. [PMID: 24316398 DOI: 10.1016/j.regpep.2013.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder. In a previous study the total number of endocrine cells in the rectum of IBS patients, as detected by chromogranin A, did not differ from that of healthy controls. While the total endocrine cell content of the rectum appears to be unchanged in IBS patients, changes in particular endocrine cells cannot be excluded. This study was undertaken, therefore, to investigate the cell density of different rectal endocrine cell types in (IBS) patients. Fifty patients with IBS (41 females and 9 males) were included in the study. Thirty patients had diarrhoea (IBS-D) and 20 had constipation (IBS-C) as the predominant symptom. Twenty-seven subjects were included as controls (19 females and 8 males). Rectal biopsy specimens were immunostained using the avidin-biotin-complex method for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), and oxyntomodulin and somatostatin cells. The cell densities were quantified by computerised image analysis. The serotonin cell density did not differ significantly, although a type II statistical error cannot be excluded, due to the small size of the sample. The densities of PYY and Oxyntomodulin cells were significantly lower and that of somatostatin were significantly higher in IBS patients than controls. These abnormalities were observed in both IBS-D and IBS-C patients. The abnormalities in the endocrine cells observed in this study in the rectum differed considerably from those seen in the colon of IBS patients. This indicates that caution in using the rectum to represent the large intestine in these patients. These abnormalities could be primary (genetic) or secondary to changes in the gut hormones found in other segments of the gut and/or other pathological processes. Although the-cause-and effect relationship of the abnormalities found in rectal endocrine cells is difficult to elucidate, they might contribute to the symptoms associated with IBS. The densities of PYY and somatostatin cells are potential biomarkers with good sensitivity and specificity for the diagnosis of IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Norway; Section for Gastroenterology, Medicine, University of Bergen, Norway.
| | | | - Jan G Hatlebakk
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| | - Odd Helge Gilja
- Section for Gastroenterology, Medicine, University of Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| |
Collapse
|
5
|
El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. Changes in the symptom pattern and the densities of large-intestinal endocrine cells following Campylobacter infection in irritable bowel syndrome: a case report. BMC Res Notes 2013; 6:391. [PMID: 24073715 PMCID: PMC3849659 DOI: 10.1186/1756-0500-6-391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/24/2013] [Indexed: 12/15/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. Post-infectious IBS (PI-IBS) is a subset of IBS that accounts for a large proportion of IBS patients. The PI-IBS symptoms meet the Rome criteria for IBS with diarrhoea (IBS-D) or IBS with mixed bowel habits (IBS-M). A low-grade inflammation has been reported to occur in PI-IBS. Abnormalities in intestinal endocrine cells have been reported in both sporadic IBS and PI-IBS. Case presentation A 20-year-old female with a diagnosis of IBS with constipation (IBS-C), according to Rome III criteria, contracted Campylobacter-induced gastroenteritis, after which her symptom pattern changed to IBS-M. She showed an intestinal low-grade inflammation that was manifested by an increase in the number of intraepithelial and lamina propria leucocytes and lymphocytes and an increase in the density of mast cells in lamina propria. There was also an increase in the density of intestinal serotonin and peptide YY (PYY) cells and a decrease in the density of rectal somatostatin cells. Follow-up of the patient at 4-months post-infection revealed reduction of IBS symptoms and an improvement in her quality of life. However, 6 months following the Campylobacter infection, the patient switched back from IBS-M to IBS-C, probably due to recovery from PI-IBS. The patient was treated with prucalopride, which is serotonin 5HT4 receptor agonist. Six months later following this treatment, the symptoms were reduced and the quality of life improved in the reported patient. Conclusions Gastroenteritis in patients with IBS-C causes a post-infectious, low-grade inflammation. Interaction between immune-cells and intestinal endocrine cells increases the density of certain endocrine cells, which in turn might be responsible for the change in the symptom pattern, the milder symptoms and the improvement in the quality of life seen in the reported patient. The findings in this case raise the question as to whether intestinal infections are responsible for the previously reported switching of IBS from one subtype to another over time.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Section for Gastroenterology, Stord Helse-Fonna Hospital, Stord, Norway.
| | | | | | | | | |
Collapse
|
6
|
El-Salhy M, Gundersen D, Hatlebakk JG, Hausken T. Clinical presentation, diagnosis, pathogenesis and treatment options for lymphocytic colitis (Review). Int J Mol Med 2013; 32:263-70. [PMID: 23695201 DOI: 10.3892/ijmm.2013.1385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022] Open
Abstract
Lymphocytic colitis (LC) is characterized by chronic or relapsing non-bloody watery diarrhea and a macroscopically normal colon. However, histopathological examination of colonic biopsy samples reveals an increased intraepithelial infiltration of lymphocytes (≥20/100 enterocytes), and increased inflammatory cells within the lamina propria, but with a normal mucosal architecture. The reported prevalence of LC varies from 14.2 to 45 per 100,000 individuals, while its reported incidence is between 0.6 and 16 per 100,000 individuals. LC has a high rate of spontaneous symptomatic remission and is not associated with an increased risk of colon cancer or inflammatory bowel disease. The diagnosis is based on the histopathological findings. The density of colonic chromogranin A-positive cells provides an effective diagnostic tool with high sensitivity and specificity in both the right and left colon. Gastrointestinal infections, drugs, and/or autoimmunity may trigger chronic colonic low-grade inflammation. Colonic nitric oxide, serotonin and peptide YY (PYY) cell densities are markedly increased in patients with LC. It has been hypothesized that the low-grade inflammation in LC through the endocrine-immune axis causes this increase. It has been postulated further that these abnormalities in the neuroendocrine system of the colon are responsible for the diarrhea observed in patients with LC. The benign course and rate of spontaneous remission of LC denotes that drugs with severe side-effects should be avoided if possible. The drug cost and drug coverage may also be limiting factors for some patients. These aspects should be taken into account when making decisions regarding treatment options.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Stord, Norway
| | | | | | | |
Collapse
|
7
|
El-Salhy M, Gundersen D, Ostgaard H, Lomholt-Beck B, Hatlebakk JG, Hausken T. Low densities of serotonin and peptide YY cells in the colon of patients with irritable bowel syndrome. Dig Dis Sci 2012; 57:873-8. [PMID: 22057239 PMCID: PMC3306780 DOI: 10.1007/s10620-011-1948-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 10/12/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gut hormones are important in regulating gastrointestinal motility. Disturbances in gastrointestinal motility have been reported in patients with irritable bowel syndrome (IBS). Reduced endocrine cell density, as revealed by chromogranin A, has been reported in the colon of IBS patients. AIMS To investigate a possible abnormality in the colonic endocrine cells of IBS patients. METHODS A total of 41 patients with IBS according to Rome Criteria III and 20 controls were included in the study. Biopsies from the right and left colon were obtained from both patients and controls during colonoscopy. The biopsies were immunostained for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), entroglucagon, and somatostatin cells. Cell densities were quantified by computerized image analysis. RESULTS Serotonin and PYY cell densities were reduced in the colon of IBS patients. PP, entroglucagon, and somatostatin-immunoreactive cells were too few to enable reliable quantification. CONCLUSION The cause of these observations could be primary genetic defect(s), secondary to altered serotonin and/or PYY signaling systems and/or subclinical inflammation. Serotonin activates the submucosal sensory branch of the enteric nervous system and controls gastrointestinal motility and chloride secretion via interneurons and motor neurons. PYY stimulates absorption of water and electrolytes, and inhibits prostaglandin (PG) E2, and vasoactive intestinal peptide, which stimulates intestinal fluid secretion and is a major regulator of the "ileal brake". Although the cause and effect relationship of these findings is difficult to elucidate, the abnormalities reported here might contribute to the symptoms associated with IBS.
Collapse
Affiliation(s)
- M El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Box 4000, 54 09 Stord, Norway.
| | | | | | | | | | | |
Collapse
|
8
|
Yang Q, Kock ND. Effects of dietary fish oil on intestinal adaptation in 20-day-old weanling rats after massive ileocecal resection. Pediatr Res 2010; 68:183-7. [PMID: 20531250 DOI: 10.1203/pdr.0b013e3181eb2ee5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Long chain polyunsaturated fatty acids (LCPUFA)seem to be the most trophic macronutrients in inducing intestinal adaptation in adult short bowel syndrome (SBS), although their effects on intestinal adaptation in infants with SBS remain unknown.It is hypothesized that a high fat diet enriched with n-3 LCPUFA derived from fish oil (FO) will increase intestinal adaptation compared with a diet dominated by n-6 PUFA from corn oil (CO) in weanling SBS rats after massive ileocecal resection (ICR). Twenty-day-old rats were sorted into four groups, CO-sham, FO-sham,CO-ICR, and FO-ICR groups, and fed ad lib with the CO or FO diet, respectively, for 7 d after sham or ICR surgery. Compared with CO-ICR rats, FO-ICR rats consumed less diet per gram of weight gain, had less diarrhea and fecal fat excretion, and demonstrated a tendency toward better weight gain. The mucosal mass, DNA and RNA levels of the colon and RNA levels of the distal jejunum, and the colonic mucosal area (%) were significantly higher in FO-ICR rats than in CO-ICR rats. These results suggest that the beneficial effect of dietary FO is associated with better adaptation in the colon in weanling rats after ICR.
Collapse
Affiliation(s)
- Qing Yang
- Department of Pediatrics, Wake Forest University Health Science, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
9
|
Moriya R, Shirakura T, Hirose H, Kanno T, Suzuki J, Kanatani A. NPY Y2 receptor agonist PYY(3-36) inhibits diarrhea by reducing intestinal fluid secretion and slowing colonic transit in mice. Peptides 2010; 31:671-5. [PMID: 19925840 DOI: 10.1016/j.peptides.2009.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022]
Abstract
Peptide YY (PYY)(3-36), a neuropeptide Y (NPY) Y2 receptor agonist, is a powerful inhibitor of intestinal secretion. Based on this anti-secretory effect, NPY Y2 receptor agonists may be useful as novel anti-diarrheal agents, but anti-diarrheal efficacy has yet to be determined. We therefore examined the anti-diarrheal efficacy of PYY(3-36) and a selective Y2 receptor agonist, N-acetyl-[Leu28, Leu31]-NPY(24-36), in experimental mouse models of diarrhea. Intraperitoneal administration of PYY(3-36) (0.01-1mg/kg) and N-acetyl-[Leu28, Leu31]-NPY(24-36) (10mg/kg) significantly inhibited diarrhea (increase in wet fecal weight and diarrhea score) induced by dimethyl-prostaglandin E2, 5-hydroxytryptamine, and castor oil. Anti-diarrheal activities of PYY(3-36) and N-acetyl-[Leu28, Leu31]-NPY(24-36) were comparable to the effects of loperamide (1mg/kg), a widely used anti-diarrheal drug. To clarify the anti-diarrheal mechanisms of NPY Y2 receptor agonists, we investigated the effects of PYY(3-36) and N-acetyl-[Leu28, Leu31]-NPY(24-36) on intestinal fluid secretion and colonic transit. PYY(3-36) (1mg/kg) and N-acetyl-[Leu28, Leu31]-NPY(24-36) (10mg/kg) significantly reduced dimethyl-prostaglandin E2-induced intestinal fluid accumulation in conscious mice, suggesting that NPY Y2 receptor agonists inhibit diarrhea, at least in part, by reducing intestinal secretion. In addition, PYY(3-36) (0.01-1mg/kg) and N-acetyl-[Leu28, Leu31]-NPY(24-36) (10mg/kg) potently inhibited normal fecal output, suggesting that NPY Y2 receptor activation inhibits colonic motor function and NPY Y2 receptor agonists inhibit diarrhea partly by slowing colonic transit. These results indicate that NPY Y2 receptor agonists inhibit diarrhea in mice by not only reducing intestinal fluid secretion, but also slowing colonic transit, and illustrate the therapeutic potential of NPY Y2 receptor agonists as effective treatments for diarrhea.
Collapse
Affiliation(s)
- Ryuichi Moriya
- Tsukuba Research Institute, Banyu Pharmaceutical Co, Ltd, Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Hirotani Y, Mikajiri K, Ikeda K, Myotoku M, Kurokawa N. Changes of intestinal mucosal and plasma PYY in a diarrhea model rat and influence of loperamide as the treatment agent for diarrhea. YAKUGAKU ZASSHI 2008; 128:1311-6. [PMID: 18758145 DOI: 10.1248/yakushi.128.1311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide YY (PYY) is produced by endocrine cells in the lower gastrointestinal tract. The main functions of PYY are antisecretory effects in the colon and inhibition of gastrointestinal motility. We chose PYY as an index of the intrinsic factor in diarrhea and examined the influence of changes induced in a diarrhea rat model by administration of 4 types of laxative and loperamide hydrochloride (loperamide) as an agent for the treatment of diarrhea. A specific radioimmunoassay was performed to determine plasma and intestinal mucosal PYY concentrations. PYY in the rat intestinal tissue extract was distributed at a high density in the lower intestinal mucosa. In the diarrhea rat model, multiple changes in PYY concentrations in the intestinal mucosa and plasma were observed. In rats administered castor oil and sodium picosulfate, the intestinal mucosal PYY levels significantly decreased in a dose-dependent manner. Plasma PYY levels significantly decreased only in rats administered magnesium citrate. Next, we examined the influence of loperamide administration on the intestinal mucosa and plasma PYY concentrations in these rats. Loperamide administration resulted in multiple changes in plasma and intestinal mucosa PYY concentrations, along with an improvement in the diarrhea. Our research showed that the endocrine hormone PYY is involved in the onset of diarrhea, the course of the condition, and the manifestation of medicinal effects in the lower intestine.
Collapse
Affiliation(s)
- Yoshihiko Hirotani
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohatani University, 3-11-1 Nishikiorikita, Tondabayashi-City, Japan.
| | | | | | | | | |
Collapse
|
11
|
Hirotani Y, Mikajiri K, Ikeda K, Myotoku M, Kurokawa N. Changes of the peptide YY levels in the intestinal tissue of rats with experimental colitis following oral administration of mesalazine and prednisolone. YAKUGAKU ZASSHI 2008; 128:1347-53. [PMID: 18758150 DOI: 10.1248/yakushi.128.1347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Few studies have reported the changes in the peptide YY (PYY) levels in the intestinal tissue of rats with ulcerative colitis (UC) following oral administration of mesalazine and prednisolone. We investigated the effects of these drugs on the intestinal mucosal PYY levels in a rat model of UC. We confirmed that the PYY levels in the rat intestinal mucosal tissue were high in the lower intestinal tract. The leukocyte count and hemoglobin levels approached the normal values after administering mesalazine or prednisolone to rats treated with 3% dextran sulfate sodium (DSS). The PYY levels in the caecum and colon decreased significantly after administering DSS but increased when mesalazine was administered in a tissue-specific manner. Unlike mesalazine, the PYY levels increased in the ileum in addition to the colon and rectum after administering prednisolone. However, neither of the drugs induced any changes in the plasma PYY levels. These findings indicate that changes in the intestinal tissue PYY levels may be partially involved in the improvement of DSS-induced UC in rats following the administration of these drugs.
Collapse
Affiliation(s)
- Yoshihiko Hirotani
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiorikita, Tondabayashi City, Japan.
| | | | | | | | | |
Collapse
|
12
|
Keire DA, Whitelegge JP, Bassilian S, Faull KF, Wiggins BW, Mehdizadeh OB, Reidelberger RD, Haver AC, Sayegh AI, Reeve JR. A new endogenous form of PYY isolated from canine ileum: Gly-extended PYY(1-36). ACTA ACUST UNITED AC 2008; 151:61-70. [PMID: 18501442 DOI: 10.1016/j.regpep.2008.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/21/2008] [Accepted: 04/01/2008] [Indexed: 11/30/2022]
Abstract
We purified and identified the peptide YY (PYY) forms present and determined their levels from a portion of the canine ileum directly adjacent to the cecum by a new extraction method designed to prevent and evaluate degradation of endogenous peptides. We used three reverse phase chromatography steps with radioimmunoassay of fractions for PYY-like-immunoreactivity (PYY-LI). The purified fractions underwent intact protein/peptide mass spectrometry identification and sequencing (i.e. "top-down" MS analysis). This analysis confirmed the identity of a new form of PYY, PYY(1-36)-Gly, which co-elutes with PYY(1-36)-NH(2) through all three of separation steps used. The PYY(1-36)-Gly form represents approximately 20% of the total PYY found in this region of the canine intestine. In addition, we also found that the PYY(3-36)-NH(2) form represents 6% of the total PYY in the canine ileo-cecal junction. The physiological implication of the Gly-extended form of PYY(1-36) warrants further investigation.
Collapse
Affiliation(s)
- David A Keire
- CURE: Digestive Diseases Research Center, VA GLAHS, Los Angeles, CA 90073 and Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vona-Davis L, McFadden DW. PYY and the pancreas: inhibition of tumor growth and inflammation. Peptides 2007; 28:334-8. [PMID: 17194501 DOI: 10.1016/j.peptides.2006.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/07/2006] [Indexed: 11/24/2022]
Abstract
Peptide YY (PYY) orchestrates function of the gut and pancreas by regulating growth, digestion and absorption. In addition to its physiological role, PYY exhibits immune and antitrophic properties in the pancreas by decreasing cytokine and amylase release. Although the exact mechanism(s) of action are still not fully understood, PYY interacts at the acinar level with numerous intracellular transcription factors. In addition to ameliorating pancreatic inflammation, novel synthetic analogs of PYY have been developed that are potent inhibitors in the proliferation of pancreatic cancer. The present paper reviews our current findings with PYY and examines the therapeutic implications of its utility in treating inflammation and cancer.
Collapse
Affiliation(s)
- Linda Vona-Davis
- Department of Surgery, West Virginia University, PO Box 9238, Morgantown, WV 26506, USA
| | | |
Collapse
|
14
|
Abstract
Differences in the structure of PYY and two important analogs, PYY [3-36] and [Pro34]PYY, are evaluated. Y-receptor subtype ligand binding data are used in conjunction with structural data to develop a model for receptor subtype selective agonists. For PYY it is proposed that potent binding to Y1, Y4 and Y5 receptors requires the juxtaposition of the two termini while Y2 binding only requires the C-terminal helix. Further experiments that delineate between primary and tertiary structure contributions for receptor binding and activation are required to support the hypothesis that tertiary structure is stable enough to influence the expression of PYY's bioactivity.
Collapse
Affiliation(s)
- D A Keire
- CURE Digestive Diseases Research Center, Greater Los Angeles Veterans Health Care System, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
15
|
Keire DA, Mannon P, Kobayashi M, Walsh JH, Solomon TE, Reeve JR. Primary structures of PYY, [Pro(34)]PYY, and PYY-(3-36) confer different conformations and receptor selectivity. Am J Physiol Gastrointest Liver Physiol 2000; 279:G126-31. [PMID: 10898754 DOI: 10.1152/ajpgi.2000.279.1.g126] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We synthesized PYY-(1-36) (nonselective between Y(1) and Y(2) receptor subtype agonists), [Pro(34)]PYY (selective for Y(1)), and PYY-(3-36) (selective for Y(2)) to determine whether solution conformation plays a role in receptor subtype selectivity. The three peptides exhibited the expected specificities in displacing labeled PYY-(1-36) from cells transfected with Y(1) receptors (dissociation constants = 0.42, 0.21, and 1,050 nM, respectively) and from cells transfected with Y(2) receptors (dissociation constants = 0.03, 710, and 0.11 nM, respectively) for PYY-(1-36), [Pro(34)]PYY, and PYY-(3-36). Sedimentation equilibrium analyses revealed that the three PYY analogs were 80-90% monomer at the concentrations used for the subsequent circular dichroism (CD) and (1)H-nuclear magnetic resonance (NMR) studies. CD analysis measured helicities for PYY-(1-36), [Pro(34)]PYY, and PYY-(3-36) of 42%, 31%, and 24%, suggesting distinct differences in secondary structure. The backbone (1)H-NMR resonances of the three peptides further substantiated marked conformational differences. These patterns support the hypothesis that Y(1) and Y(2) receptor subtype binding affinities depend on the secondary and tertiary solution state structures of PYY and its analogs.
Collapse
Affiliation(s)
- D A Keire
- The Beckman Research Institute of the City of Hope, Duarte, California 91010-0269, USA
| | | | | | | | | | | |
Collapse
|
16
|
Chariot J, Tsocas A, Souli A, Presset O, Rozé C. Neural mechanism of the antisecretory effect of peptide YY in the rat colon in vivo. Peptides 2000; 21:59-63. [PMID: 10704720 DOI: 10.1016/s0196-9781(99)00174-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this work was to determine the mechanism of the antisecretory effect of peptide YY in the rat colon and whether this effect is physiological. In this prospect, doses of exogenous peptide YY producing physiological and supraphysiological plasma levels were intravenously infused in rats provided with colonic and jejunal ligated loops in vivo, under secretory stimulation by vasoactive intestinal peptide. Peptide YY decreased the secretory effect of VIP in a dose-related fashion. The effect of peptide YY was blocked or strongly decreased by tetrodotoxin, hexamethonium, idazoxan, haloperidol, and the sigma antagonist BMY 14, 802 in both the colon and jejunum. We conclude that peptide YY decreases water and electrolyte secretion in the colonic mucosa by a complex neural mechanism involving at least two neurons connected through a nicotinic synapse, alpha-2 adrenoceptors and sigma receptors, and that this effect can occur with physiological doses of peptide YY.
Collapse
Affiliation(s)
- J Chariot
- Institut National de la Santé et de la Recherche Médicale U410, Faculté de Médecine X. Bichat, BP 416, 75870, Paris, France
| | | | | | | | | |
Collapse
|
17
|
M'Koma AE, Lindquist K, Liljeqvist L. Effect of restorative proctocolectomy on gastric acid secretion and serum gastrin levels: a prospective study. Dis Colon Rectum 1999; 42:398-402. [PMID: 10223764 DOI: 10.1007/bf02236361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of the present study was to analyze gastric acid secretion after restorative proctocolectomy, because it has been shown that ileal resection or exclusion may increase gastric acid secretion. An increased output of gastric acids may decrease the intestinal passage time and contribute to looser stools. METHODS Eleven patients who had elective colectomy and ileoanal pouch because of ulcerative colitis were investigated. Eight patient were males. Eight S-pouches and three J-pouches were constructed. Gastric acid secretion (retention, basic, and stimulated) was studied, together with serum gastrin, pentagastrin, and pepsinogen, in patients before colectomy and after having had the pelvic pouch functioning for 12 months. RESULTS A significant increase, compared with preoperative levels, in retention, basic, and stimulated gastric acid secretion was found after 12 months with the pouch functioning. Levels of serum gastrin, pentagastrin, and pepsinogen were unchanged. CONCLUSION Restorative proctocolectomy leads to a significant increase in gastric acid secretion. These findings may be of importance with regard to intestinal passage time and consistency of the stools.
Collapse
Affiliation(s)
- A E M'Koma
- Department of Surgery, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Fu-Cheng X, Souli A, Chariot J, Rozé C. Antisecretory effect of peptide YY through neural receptors in the rat jejunum in vitro. Peptides 1999; 20:987-93. [PMID: 10503778 DOI: 10.1016/s0196-9781(99)00092-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basal short circuit current (Isc) was measured in stripped rat jejunum after addition of neural antagonists and of peptide YY (PYY). Basal Isc was slightly (by 10-21%) but significantly inhibited by tetrodotoxin, hexamethonium, idazoxan, and the sigma antagonist BMY 14,802. PYY (10(-7) M) reduced basal Isc by approximately 54%. This inhibition was unchanged by hexamethonium but reduced by 44-68% in the presence of tetrodotoxin, idazoxan, haloperidol, BMY 14,802, and atropine. The Y2 agonist pYY(3-36) was more potent than the Y1 agonist (Leu31,Pro34)PYY. In conclusion, PYY reduces basal Isc in rat jejunum in part through a neural mechanism involving muscarinic receptors, alpha2 adrenoceptors, and sigma receptors and, in part, through a direct effect on enterocytes. The PYY effect seems mainly carried out through Y2-receptor activation.
Collapse
Affiliation(s)
- X Fu-Cheng
- INSERM U410, Faculté de Médecine X. Bichat, Paris, France
| | | | | | | |
Collapse
|
19
|
Goumain M, Voisin T, Lorinet AM, Laburthe M. Identification and distribution of mRNA encoding the Y1, Y2, Y4, and Y5 receptors for peptides of the PP-fold family in the rat intestine and colon. Biochem Biophys Res Commun 1998; 247:52-6. [PMID: 9636652 DOI: 10.1006/bbrc.1998.8647] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide YY (PYY), neuropeptide Y (NPY) and pancreatic polypeptide (PP) are structurally related peptides which have potent antisecretory effects in small and/or large intestines. Receptors mediating these effects are still unknown with the exception of a PYY-preferring receptor expressed in small intestinal crypts. In the present study, expression of recently cloned Y1, Y2, and Y5 receptors which have similar affinity for PYY and NPY and Y4 receptors which have a high affinity for PP was investigated in gut by RT-PCR analysis. The data show that all Y receptors are expressed in small intestine and/or colon but with specific distributions. Y1 receptors are only expressed in nonepithelial colonic tissue, whereas Y2 and Y4 receptors are present in both epithelial and nonepithelial tissue of the small or large intestine. In contrast, Y5 receptor expression appears to be restricted to epithelial crypts of the small intestine and nonepithelial tissue of colon. Sequencing of PCR products showed 100% identity with the corresponding sequences of the cloned Y1, Y4, or Y5 receptors. The PCR product obtained with Y2 primers from rat crypt cells showed 84% identity with the cloned human Y2 receptor. These data indicate a wide distribution of Y receptors in small intestine and colon. They also suggest that Y1, Y2, Y4, and Y5 receptors may be responsible for still unexplained effects of PYY, NPY, or PP on secretion in small and large intestines.
Collapse
Affiliation(s)
- M Goumain
- Unité de Neuroendocrinologie et Biologie Cellulaire Digestives, INSERM U410, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|
20
|
Fu-Cheng X, Souli A, Anini Y, Chariot J, Rozé C. Inhibitory effects of peptide YY on basal and VIP-stimulated short-circuit current in the rat jejunum: influence of technical conditions on observed results. Peptides 1998; 19:1503-9. [PMID: 9864056 DOI: 10.1016/s0196-9781(98)00103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction of PYY and VIP was studied in stripped and intact rat jejunum preparations mounted in Ussing chambers. PYY decreased basal Isc in intact as well as in stripped jejunum. Stripping was necessary to evidence a stimulation of basal Isc by VIP. When PYY and VIP were administered at the same time in the serosal bath, their effects seemed additive; VIP stimulation took over when VIP was present in ten times larger amounts than PYY, while PYY inhibition predominated at isomolar concentrations (10(-7) M) of both peptides. However, when PYY was administered three to six minutes before isomolar amounts of VIP, the VIP stimulation developed without being notably hampered. At this time, however, the amount of radioimmunoassayable PYY in the serosal compartment represented still 60% of the added amount. In conclusion, the experimental conditions can significantly change the results: stripping the longitudinal muscle/myenteric plexus impairs the effect of PYY and VIP in a different fashion, while the timing and order of administration of the peptides may change the apparent interaction between VIP stimulation and PYY inhibition.
Collapse
Affiliation(s)
- X Fu-Cheng
- INSERM U410, Faculté de Médecine X. Bichat, Paris, France
| | | | | | | | | |
Collapse
|