1
|
Hara M, Saburi S, Uehara N, Tsujikawa T, Kubo M, Furukawa T, Teshima M, Shinomiya H, Hirano S, Nibu KI. Induction of Immunological Antitumor Effects by the Combination of Adenovirus-Mediated Gene Transfer of B7-1 and Anti-Programmed Cell Death-1 Antibody in a Murine Squamous Cell Carcinoma Model. Cancers (Basel) 2024; 16:1359. [PMID: 38611038 PMCID: PMC11010972 DOI: 10.3390/cancers16071359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The goal of this study was to evaluate the antitumor immune effects of B7-1 gene expression in addition to immune checkpoint inhibitor against squamous cell carcinoma. METHODS A murine SCC cell line, KLN205, was infected with adenoviral vector carrying B7-1 (AdB7). Infected cells were injected subcutaneously in the flanks of DBA/2 mice. Three weeks after implantation, anti-mouse PD-1 antibody (antiPD1) was intraperitonially administrated twice a week for a total of six times. RESULTS CD80 was significantly overexpressed in the AdB7-infected tumors. IFN-gamma in the T cells in the spleen was significantly increased and tumor size was significantly reduced in the mice treated with both AdB7 and antiPD1. Targeted tumors treated with both AdB7 and antiPD1 exhibited significantly increased cell densities of total immune cells as well as Ki-67+ CD8+ T cells and decreased regulatory T cells. CONCLUSIONS These results suggest that the B7-1 gene transfer may enhance the antitumor effect of anti-PD1 antibody against SCC.
Collapse
Affiliation(s)
- Makiko Hara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Sumiyo Saburi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (T.T.); (S.H.)
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (T.T.); (S.H.)
| | - Mie Kubo
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Tatsuya Furukawa
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Masanori Teshima
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (T.T.); (S.H.)
| | - Ken-ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| |
Collapse
|
2
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014; 14:1241-57. [PMID: 24773178 DOI: 10.1517/14712598.2014.915307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014. [PMID: 24773178 DOI: 10.1517/14712598.2014.91530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Saka M, Amano T, Kajiwara K, Yoshikawa K, Ideguchi M, Nomura S, Fujisawa H, Kato S, Fujii M, Ueno K, Hinoda Y, Suzuki M. Vaccine therapy with dendritic cells transfected with Il13ra2 mRNA for glioma in mice. J Neurosurg 2010; 113:270-9. [PMID: 19895199 DOI: 10.3171/2009.9.jns09708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The Il13ra2 gene is often overexpressed in brain tumors, making Il13ra2 one of the vaccine targets for immunotherapy of glioma. In this study, using a mouse glioma model, the authors tested the hypothesis that vaccination using dendritic cells transfected with Il13ra2 mRNA induces strong immunological antitumor effects. METHODS A plasmid was constructed for transduction of the mRNAs transcribed in vitro into dendritic cells. This was done to transport the intracellular protein efficiently into major histocompatibility complex class II compartments by adding a late endosomal/lysosomal sorting signal to the Il13ra2 gene. The dendritic cells transfected with this Il13ra2 mRNA were injected intraperitoneally into the mouse glioma model at 3 and 10 days after tumor cell implantation. The antitumor effects were estimated based on the survival rate, results of histological analysis, and immunohistochemical findings for immune cells. RESULTS The group treated by vaccination therapy with dendritic cells transfected with Il13ra2 mRNA survived significantly longer than did the control groups. Immunohistochemical analysis revealed that greater numbers of T lymphocytes containing CD4+ and CD8+ T cells were found in the group vaccinated with dendritic cells transfected with Il13ra2 mRNA. CONCLUSIONS These results demonstrate the therapeutic potential of vaccination with dendritic cells transfected with Il13ra2 mRNA for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Makoto Saka
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pan D, Wei X, Liu M, Feng S, Tian X, Feng X, Zhang X. Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol Res 2009; 32:502-9. [PMID: 19589203 DOI: 10.1179/174313209x455736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Malignant gliomas are good targets for gene therapy because they have been proven incurable with conventional treatments. However, malignant gliomas are genetically and physiologically highly heterogeneous, and current gene therapy interventions have been designed to target only a few variations of this kind of disease. Hence, we developed a combined gene therapy approach using a recombinant adenovirus carrying human wild-type p53 (WT-p53), granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7-1 genes (designated BB-102) to combat the disease. METHODS Human malignant glioma cells U251 and U87 were transduced with BB-102. Expression of WT-p53, GM-CSF and B7-1 genes were determined by Western blot, enzyme linked immunosorbent assay and flow cytometric analysis, respectively. Growth rates were determined by serial cell counts. Apoptosis was detected by flow cytometric analysis. Proliferation of autologous peripheral blood lymphocytes (PBLs) and cytotoxicity against primary glioma cells were assessed by cell proliferation and cytotoxicity assay kits, respectively. RESULTS By the transduction of BB-102, high expression levels of the three exogenesis genes were detected in glioma cells. Cell growth was inhibited and apoptosis was induced. Significant proliferation of autologous PBLs and specific cytotoxicity against primary glioma cells were also induced by the infection of BB-102 in vitro, with the effect being more evident than that of Ad-p53. CONCLUSION These results suggest that glioma cell vaccination co-transferred with p53, GM-CSF and B7-1 genes may be a feasible and effective immunotherapeutic approach in glioma treatments.
Collapse
Affiliation(s)
- Dongsheng Pan
- Institute of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Immunizations With IFNγ Secreting Tumor Cells can Eliminate Fully Established and Invasive Rat Gliomas. J Immunother 2009; 32:593-601. [DOI: 10.1097/cji.0b013e3181a95148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Anderson RCE, Anderson DE, Elder JB, Brown MD, Mandigo CE, Parsa AT, Goodman RR, McKhann GM, Sisti MB, Bruce JN. Lack of B7 expression, not human leukocyte antigen expression, facilitates immune evasion by human malignant gliomas. Neurosurgery 2007; 60:1129-36; discussion 1136. [PMID: 17538388 DOI: 10.1227/01.neu.0000255460.91892.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Lack of human leukocyte antigens and costimulatory molecules have been suggested as mechanisms by which human malignant gliomas avoid immune recognition and elimination. METHODS Using quantitative multiparameter flow cytometric analysis, tumor cells from patients with glioblastoma multiforme (n = 18) were examined ex vivo for the expression of human leukocyte antigen Class I and II molecules and the costimulatory molecules B7-1 and B7-2. They were compared with reactive astrocytes from peritumoral brain metastases (n = 7), and astrocytes removed during nontumor surgery (n = 5). RESULTS In contrast to the vast majority of solid peripheral human tumors, these results demonstrate that glioblastoma multiforme frequently express both human leukocyte antigen Class I and II molecules. Like most solid peripheral tumors, glioblastoma multiforme tumor cells express few or no B7 costimulatory molecules. Functional assays using heterogeneous ex vivo tumor preparations or pure populations of ex vivo tumor cells and microglia obtained using fluorescence-activated cell sorting indicate that CD4+ T-cells are activated by tumor cells only in the presence of exogenous B7 costimulation (provided by addition of soluble agonist anti-CD28 monoclonal antibody). CONCLUSION Thus, in contrast to many solid peripheral tumors, failure to present tumor antigens is not a likely impediment to immunotherapeutic strategies against malignant gliomas. Rather, immunotherapeutic strategies need to overcome low levels of B7 costimulation.
Collapse
Affiliation(s)
- Richard C E Anderson
- Department of Neurological Surgery, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Amano T, Kajiwara K, Yoshikawa K, Morioka J, Nomura S, Fujisawa H, Kato S, Fujii M, Fukui M, Hinoda Y, Suzuki M. Antitumor effects of vaccination with dendritic cells transfected with modified receptor for hyaluronan-mediated motility mRNA in a mouse glioma model. J Neurosurg 2007; 106:638-45. [PMID: 17432716 DOI: 10.3171/jns.2007.106.4.638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The receptor for hyaluronan-mediated motility (RHAMM) is frequently overexpressed in brain tumors and was recently identified as an immunogenic antigen by using serological screening of cDNA expression libraries. In this study, which was conducted using a mouse glioma model, the authors tested the hypothesis that vaccination with dendritic cells transfected with RHAMM mRNA induces strong immunological antitumor effects. METHODS The authors constructed a plasmid for transduction of the mRNAs transcribed in vitro into dendritic cells, which were then used to transport the intracellular protein RHAMM efficiently into major histocompatibility complex class II compartments by adding a late endosomal-lysosomal sorting signal to the RHAMM gene. The dendritic cells transfected with this RHAMM mRNA were injected intraperitoneally into the mouse glioma model 3 and 10 days after tumor cell implantation. The antitumor effects of the vaccine were estimated by the survival rate, histological analysis, and immunohistochemical findings for immune cells. Mice in the group treated by vaccination therapy with dendritic cells transfected with RHAMM mRNA survived significantly longer than those in the control groups. Immunohistochemical analysis revealed that greater numbers of T lymphocytes containing T cells activated by CD4+, CD8+, and CD25+ were found in the group vaccinated with dendritic cells transfected with RHAMM mRNA. CONCLUSIONS These results demonstrate the therapeutic potential of vaccination with dendritic cells transfected with RHAMM mRNA for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Takayuki Amano
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Curtin JF, King GD, Candolfi M, Greeno RB, Kroeger KM, Lowenstein PR, Castro MG. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors. Curr Top Med Chem 2005; 5:1151-70. [PMID: 16248789 PMCID: PMC1629031 DOI: 10.2174/156802605774370856] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as 'immune privileged', brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time.
Collapse
Affiliation(s)
- James F Curtin
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Research Pavilion, Suite 5090, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Morioka J, Kajiwara K, Yoshikawa K, Ideguchi M, Uchida T, Suzuki M. Vaccine Therapy for Murine Glioma Using Tumor Cells Genetically Modified to Express B7.1. Neurosurgery 2004; 54:182-9; discussion 189-90. [PMID: 14683556 DOI: 10.1227/01.neu.0000097517.22018.3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 09/03/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE In a syngeneic mouse brain tumor model, we tested the hypothesis that vaccination with tumor cells genetically modified to express B7.1 molecules induces tumor-specific T cells and immunological antitumor effects. METHODS Malignant glioma cells (RSV-MG) derived from a C3H/He mouse induced by Schmidt-Ruppin Rous sarcoma virus (RSV) were infected with an adenovirus encoding the B7.1 gene (AdB7). To investigate the effects of B7.1 expression on the tumorigenicity of RSV-MG cells, infected cells were implanted subcutaneously into C3H/He mice. The C3H/He mice were vaccinated with AdB7 transfectants injected subcutaneously and 2 weeks later were challenged intracerebrally with wild-type RSV-MG cells to determine whether or not the expression of B7.1 would enhance the immunogenicity of RSV-MG cells. RESULTS Immunocytochemistry confirmed the expression of B7.1 and major histocompatibility complex Class I antigen on the infected cells. The growth of subcutaneous tumors was markedly retarded in the AdB7 group, whereas tumors had formed and progressively increased in size in the other control groups. In the vaccine experiments, the mice immunized with AdB7 transfectants survived longer than did the mice of the other groups, and a significant difference in survival times was noted. Immunocytochemistry revealed that brain tumors in mice previously vaccinated with AdB7 infectants had been infiltrated by a larger number of CD3(+) lymphocytes and that these CD3(+) lymphocytes contained not only CD4(+) and CD8(+) T cells but also CD25(+)-activated T cells. In addition, a cytotoxicity assay confirmed that vaccination with the AdB7 transfectants induced tumor-specific cytotoxicity. CONCLUSION These results demonstrate the therapeutic potential of vaccination with tumor cells expressing B7.1 for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Jun Morioka
- Department of Neurosurgery, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|