1
|
Ramotowska S, Ciesielska A, Makowski M. What Can Electrochemical Methods Offer in Determining DNA-Drug Interactions? Molecules 2021; 26:3478. [PMID: 34200473 PMCID: PMC8201389 DOI: 10.3390/molecules26113478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies. Cognition of the therapeutic action mechanisms is particularly important for designing new drugs. Owing to their sensitivity, simplicity, and low costs, electrochemical methods are increasingly used for this type of research. Compared to other techniques, they require a small number of samples and are characterized by a high reliability. These methods can provide information about the type of interaction and the binding strength, as well as the damage caused by biologically active molecules targeting the cellular DNA. This review paper summarizes the various electrochemical approaches used for the study of the interactions between pharmaceuticals and DNA. The main focus is on the papers from the last decade, with particular attention on the voltammetric techniques. The most preferred experimental approaches, the electrode materials and the new methods of modification are presented. The data on the detection ranges, the binding modes and the binding constant values of pharmaceuticals are summarized. Both the importance of the presented research and the importance of future prospects are discussed.
Collapse
Affiliation(s)
| | | | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (S.R.); (A.C.)
| |
Collapse
|
2
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
3
|
Bachmann R, Shakiba N, Fischer M, Hackl T. Assessment of Mixtures by Spectral Superposition. An Approach in the Field of Metabolomics. J Proteome Res 2019; 18:2458-2466. [DOI: 10.1021/acs.jproteome.8b00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- René Bachmann
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Navid Shakiba
- Hamburg School of Food Science—Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science—Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Thomas Hackl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- Hamburg School of Food Science—Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
5
|
Preparation of ds-DNA functionalized magnetic nanobaits for screening of bioactive compounds from medicinal plant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:401-8. [DOI: 10.1016/j.msec.2015.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/23/2015] [Accepted: 06/25/2015] [Indexed: 11/22/2022]
|
6
|
Kumar D. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:85-91. [PMID: 24161682 DOI: 10.1016/j.jmr.2013.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone (15)N and (13)C'/(13)C(α) chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone (15)N(i) chemical shifts with that of (13)C' (i-1)/(13)C(α) (i-1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate (15)N chemical shifts and (ii) reduces the signal overlap in F2((15)N)-F3((1)H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively.
Collapse
Affiliation(s)
- Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
7
|
Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins. ACTA ACUST UNITED AC 2013; 14:109-18. [PMID: 23982149 DOI: 10.1007/s10969-013-9161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Sequence specific resonance assignment of proteins forms the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone ((1)H, (15)N, (13)C(α) and (13)C') resonances of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality experiment--(4,3)D-hnCOCANH and exploits the linear combinations of backbone ((13)C(α) and (13)C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text). The resulted increased dispersion of peaks--which is different in sum (CA + CO) and difference (CA - CO) frequency regions--greatly facilitates the analysis of the spectrum by resolving the problems (associated with routine assignment strategies) arising because of degenerate amide (15)N and backbone (13)C chemical shifts. Further, the spectrum provides direct distinction between intra- and inter-residue correlations because of their opposite peak signs. The other beneficial feature of the spectrum is that it provides: (a) multiple unidirectional sequential (i→i + 1) (15)N and (13)C correlations and (b) facile identification of certain specific triplet sequences which serve as check points for mapping the stretches of sequentially connected HSQC cross peaks on to the primary sequence for assigning the resonances sequence specifically. On top of all this, the F₂-F₃ planes of the spectrum corresponding to sum (CA + CO) and difference (CA - CO) chemical shifts enable rapid and unambiguous identification of sequential HSQC peaks through matching their coordinates in these two planes (see the text). Overall, the experiment presented here will serve as an important backbone assignment tool for variety of structural and functional proteomics and drug discovery research programs by NMR involving well behaved small folded proteins (MW < 15 kDa) or a range of intrinsically disordered proteins.
Collapse
|
8
|
Brasil CRS, Delbem ACB, da Silva FLB. Multiobjective evolutionary algorithm with many tables for purelyab initioprotein structure prediction. J Comput Chem 2013; 34:1719-34. [DOI: 10.1002/jcc.23315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/26/2013] [Accepted: 04/07/2013] [Indexed: 11/10/2022]
|
9
|
Mirzaie S, Rafii F, Yasunaga K, Yoshunaga K, Sepehrizadeh Z, Kanno S, Tonegawa Y, Reza Shahverdi A. Prediction of the mode of interaction between monoterpenes and the nitroreductase from Enterobacter cloacae by docking simulation. Comput Biol Med 2012; 42:414-21. [DOI: 10.1016/j.compbiomed.2011.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 10/05/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
10
|
Powers R. NMR metabolomics and drug discovery. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47 Suppl 1:S2-S11. [PMID: 19504464 DOI: 10.1002/mrc.2461] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
NMR is an integral component of the drug discovery process with applications in lead discovery, validation, and optimization. NMR is routinely used for fragment-based ligand affinity screens, high-resolution protein structure determination, and rapid protein-ligand co-structure modeling. Because of this inherent versatility, NMR is currently making significant contributions in the burgeoning area of metabolomics, where NMR is successfully being used to identify biomarkers for various diseases, to analyze drug toxicity and to determine a drug's in vivo efficacy and selectivity. This review describes advances in NMR-based metabolomics and discusses some recent applications.
Collapse
Affiliation(s)
- Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
11
|
Stark J, Powers R. Rapid protein-ligand costructures using chemical shift perturbations. J Am Chem Soc 2007; 130:535-45. [PMID: 18088118 DOI: 10.1021/ja0737974] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-based drug discovery requires the iterative determination of protein-ligand costructures in order to improve the binding affinity and selectivity of potential drug candidates. In general, X-ray and NMR structure determination methods are time consuming and are typically the limiting factor in the drug discovery process. The application of molecular docking simulations to filter and evaluate drug candidates has become a common method to improve the throughput and efficiency of structure-based drug design. Unfortunately, molecular docking methods suffer from common problems that include ambiguous ligand conformers or failure to predict the correct docked structure. A rapid approach to determine accurate protein-ligand costructures is described based on NMR chemical shift perturbation (CSP) data routinely obtained using 2D 1H-15N HSQC spectra in high-throughput ligand affinity screens. The CSP data is used to both guide and filter AutoDock calculations using our AutoDockFilter program. This method is demonstrated for 19 distinct protein-ligand complexes where the docked conformers exhibited an average rmsd of 1.17 +/- 0.74 A relative to the original X-ray structures for the protein-ligand complexes.
Collapse
Affiliation(s)
- Jaime Stark
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | |
Collapse
|
12
|
Abstract
Structure determination has already proven useful for lead optimization and direct drug design. The number of high-resolution structures available in public databases today exceeds 30,000 and will definitely aid in structure-based drug design. Structural genomics approaches covering whole genomes, topologically similar proteins or gene families are great assets for further progress in the development of new drugs. However, membrane proteins representing 70% of current drug targets are poorly characterized structurally. The problems have been related to difficulties in obtaining large amount of recombinant membrane proteins as well as their purification and structure determination. Structural genomics has proven successful in developing new methods in areas from expression to structure determination by studying a large number of target proteins in parallel.
Collapse
Affiliation(s)
- K Lundstrom
- Flamel Technologies, 33 Avenue du Dr. Georges Lévy, 69693 Vénissieux, France.
| |
Collapse
|
13
|
Structural Genomics. CELL ENGINEERING 2007. [PMCID: PMC7122701 DOI: 10.1007/1-4020-5252-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Drug discovery based on structural knowledge has proven useful as several structure-based medicines are already on the market. Structural genomics aims at studying a large number of gene products including whole genomes, topologically similar proteins, protein families and protein subtypes in parallel. Particularly, therapeutically relevant targets have been selected for structural genomics initiatives. In this context, integral membrane proteins, which represent 60–70% of the current drug targets, have been of major interest. Paradoxically, membrane proteins present the last frontier to conquer in structural biology as some 100 high resolution structures among the 30,000 entries in public structural databases are available. The modest success rate on membrane proteins relates to the difficulties in their expression, purification and crystallography. To facilitate technology development large networks providing expertise in molecular biology, protein biochemistry and structural biology have been established. The privately funded MePNet program has studied 100 G protein-coupled receptors, which resulted in high level expression of a large number of receptors at structural biology compatible levels. Currently, selected GPCRs have been purified and subjected to crystallization attempts
Collapse
|
14
|
Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM. Electrochemical approach of anticancer drugs--DNA interaction. J Pharm Biomed Anal 2005; 37:205-17. [PMID: 15708659 DOI: 10.1016/j.jpba.2004.10.037] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 10/28/2004] [Indexed: 11/18/2022]
Abstract
The interaction of drugs with DNA is among the most important aspects of biological studies in drug discovery and pharmaceutical development processes. In recent years there has been a growing interest in the electrochemical investigation of interaction between anticancer drugs and DNA. Observing the pre and post electrochemical signals of DNA or drug interaction provides good evidence for the interaction mechanism to be elucidated. Also this interaction could be used for the quantification of these drugs and for the determination of new drugs targeting DNA. Electrochemical approach can provide new insight into rational drug design and would lead to further understanding of the interaction mechanism between anticancer drugs and DNA.
Collapse
Affiliation(s)
- S Rauf
- Bioprocess Technology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
15
|
Zech SG, Olejniczak E, Hajduk P, Mack J, McDermott AE. Characterization of Protein−Ligand Interactions by High-Resolution Solid-State NMR Spectroscopy. J Am Chem Soc 2004; 126:13948-53. [PMID: 15506755 DOI: 10.1021/ja040086m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.
Collapse
Affiliation(s)
- Stephan G Zech
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|