1
|
Zhang H, Zhao H, Huang Y, Zou Y. Genome Mining Reveals the Biosynthesis of Sativene and Its Oxidative Conversion to seco-Sativene. Org Lett 2024; 26:338-343. [PMID: 38174895 DOI: 10.1021/acs.orglett.3c04005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sativene (1) and seco-sativene are an important family of fungal sesquiterpenoids that feature unique tricyclo[4.4.0.01,7]decane and bicyclo[3.2.1]octane skeletons, respectively. Herein, we identify a three-enzyme cassette: SatA cyclizes farnesyl diphosphate (FPP) to form compound 1; CYP450 SatB catalyzes C14-C15 dihydroxylations and subsequent bond cleavage; and reductase SatC regioselectively reduces C14 aldehyde and mediates hemiacetal ring closure to generate prehelminthosporol (2). Our findings clarify the synthetic step of sativene and its oxidative transformation processes into seco-sativene.
Collapse
Affiliation(s)
- Huaran Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Haiyan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuqi Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
2
|
Phytotoxic compounds from endophytic fungi. Appl Microbiol Biotechnol 2022; 106:931-950. [PMID: 35039926 DOI: 10.1007/s00253-022-11773-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Weeds represent one of the most challenging biotic factors for the agricultural sector, responsible for causing significant losses in important agricultural crops. Traditional herbicides have managed to keep weeds at bay, but overuse has resulted in negative environmental and toxicological impacts, including the increase of herbicide-resistant species. Within this context, the use of biologically derived (bio-)herbicides represents a promising solution because they are able to provide the desired phytotoxic effects while causing less toxic environmental damage. In recent years, bioactive secondary metabolites, in particular those bio-synthesized by endophytic fungi, have been shown to be promising sources of novel compounds that can be exploited in agriculture, including their use in weed control. Endophytic fungi have the ability to produce volatile and nonvolatile compounds with broad phytotoxic activity. In addition, as a result of the beneficial relationships they establish with their host plants, they are part of the colonization mechanism and can provide protection for their hosts. As such, endophytic fungi can be exploited as bioherbicides and as research tools. In this review, we cover 100 nonvolatile secondary metabolites with phytotoxic activity and more than 20 volatile organic compounds in a mixture, produced by 28 isolates of endophytic fungi from 21 host plant families, collected in 8 countries. This information can form the basis for the application of endophytic fungal compounds in weed control. KEY POINTS: • Endophytic fungi produce a wide variety of secondary metabolites with unique and complex structures. • Fungal endophytes produce volatile and nonvolatile compounds with promising phytotoxic activity. • Endophytic fungi are a promising source of useful bioherbicides.
Collapse
|
3
|
Li YY, Tan XM, Yang J, Guo LP, Ding G. Naturally Occurring seco-Sativene Sesquiterpenoid: Chemistry and Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9827-9838. [PMID: 32853522 DOI: 10.1021/acs.jafc.0c04560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
seco-Sativenes are a small group of sesquiterpenoids with a unique bicyclo[3.2.1]octane core carbon skeleton, which implies the unusual biosynthetic pathway. Up to date, there are 40 seco-sativene analogues with diverse post-modifications isolated from different fungi. Interestingly, some seco-sativene analogues display strong phytotoxic effects, whereas others possess plant-growth-promoting biological activities. The possible mechanism of actions about phytotoxic or growth-promoting activities are partly elucidated, but structure-activity relationships are still not clear. This review provides a comprehensive overview on the structures, 1H nuclear magnetic resonance features, bioactivities, and biosynthesis of seco-sativene sesquiterpenoids from 1956 to 2020.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
4
|
Miyazaki S, Jiang K, Kobayashi M, Asami T, Nakajima M. Helminthosporic acid functions as an agonist for gibberellin receptor. Biosci Biotechnol Biochem 2017; 81:2152-2159. [PMID: 29017401 DOI: 10.1080/09168451.2017.1381018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.
Collapse
Affiliation(s)
- Sho Miyazaki
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Kai Jiang
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | | | - Tadao Asami
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Masatoshi Nakajima
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
5
|
Berestetskiy AO. A review of fungal phytotoxins: from basic studies to practical use. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s0003683808050013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Felle HH, Herrmann A, Schäfer P, Hückelhoven R, Kogel KH. Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:52-9. [PMID: 17905475 DOI: 10.1016/j.jplph.2007.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 05/17/2023]
Abstract
Using ion-selective microprobes, interactive signalling between barley and Blumeria graminis or Bipolaris sorokiniana has been investigated. The question was raised whether a biotrophically growing fungus manipulates the electrical driving forces (membrane potential, transmembrane pH), required for H+ cotransport of energy-rich compounds. Electrodes were positioned in the substomatal cavity of open stomata or on the leaf surface, and pH was measured continuously up to several days during fungal development. We demonstrate that surface and apoplastic fluids are electrically coupled and respond in a similar manner to stimuli. Apoplastic pH, monitored from the moment of inoculation with conidia, reveals several phases: 2-4h after inoculation of the barley leaf with either fungus, the host displays rapid transient responses after its first contact with the fungal cell wall; apoplastic pH and pCa increases, cytoplasmic pH and pCa decreases. About 1 day after inoculation, the apoplastic pH increases by up to 2 pH units, which is thought to reflect a resistance response against the intruder. Whereas barley leaf cells possess a membrane potential of -152+/-5 mV, hyphae of B. graminis yield -251+/-8 mV, indicative of a substantial driving force advantage for the fungus. Although the resting membrane potential of barley remains constant during the first days after inoculation, leaves infected with B. sorokiniana get confronted with an energy problem, indicated by a retarded repolarization following a "light-off" stimulus. Five days after inoculation, apoplastic pH has increased to 5.97+/-0.47 (n=11) and does no longer respond to "light-off" when measured within lesions. In contrast, it stays at near normal values outside the lesions and responds to "light-off". It is concluded that biotrophically growing fungi do not manipulate the cotransport driving forces since (i) any change in apoplastic pH would be experienced by both partners; (ii) the resting membrane potential is not changed. It is suggested that measured pH changes reflect defence responses of the host against the fungus rather than fungal action to increase compatibility.
Collapse
Affiliation(s)
- Hubert H Felle
- Botanisches Institut I, Justus-Liebig-University, Senckenbergstrasse 17, 35390 Giessen, Germany.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Phytotoxic compounds produced by plant pathogens are often crucial determinants of plant disease. Knowledge of them provides insights into disease syndromes and may be exploited by conventional breeding and biotechnology to obtain resistant crops.
Collapse
Affiliation(s)
- Richard N Strange
- Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Ibeagha AE, Hückelhoven R, Schäfer P, Singh DP, Kogel KH. Model Wheat Genotypes as Tools to Uncover Effective Defense Mechanisms Against the Hemibiotrophic Fungus Bipolaris sorokiniana. PHYTOPATHOLOGY 2005; 95:528-32. [PMID: 18943318 DOI: 10.1094/phyto-95-0528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT We investigated the interaction of several differentially resistant wheatwith the hemibiotrophic phytopathogenic fungus Bipolaris sorokiniana (teleomorph Cochliobolus sativus). Wheat genotypes Yangmai, M 3 (W7976), Shanghai 4, and Chirya 7 showed higher levels of resistancewith cv. Sonalika, used as a susceptible control. In amicroscopic inspection, we found that fungal penetration intoepidermal layer failed mostly through a cell wall-associated defense. In cases where the fungus successfully overcame epidermal, its spread within the mesophyll tissue (necrotrophic phase) wasin the more resistant genotypes. Epidermal cell wall-associated, spreading as well as the extent of electrolyte leakage of infected, correlated well with field resistance. We propose that cellular hostsuch as formation of cell wall appositions as well as the degreeearly mesophyll spreading of fungal hyphae are indicative of thepotential of the respective host genotype and, therefore, could befor the characterization of new spot blotch resistance traits in cereals.
Collapse
|
9
|
Schäfer P, Hückelhoven R, Kogel KH. The white barley mutant albostrians shows a supersusceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:366-73. [PMID: 15077669 DOI: 10.1094/mpmi.2004.17.4.366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is a cereal pathogen of increasing global concern, with most significance in Asiatic cropping systems. In order to gain insight into the mechanism of host resistance, we studied fungal development on the supersusceptible barley mutant albostrians and its parent cv. Haisa. A microscopic dissection of early fungal growth on Haisa and green albostrians leaves revealed a distinct epidermis-localized biotrophic and a mesophyll-based necrotrophic phase. White, green, and striped white-green albostrians leaves showed extreme differences in disease development. When comparing cellular defense responses, we found restriction of fungal spreading after successful infection of host mesophyll tissue to be the most important mechanism limiting outbreak of the disease. Colonization of susceptible green leaves, but not extreme colonization of supersusceptible white albostrians leaves, was associated with macroscopically visible lesion formation and mesophyll accumulation of hydrogen peroxide (H2O2), implying a symptomless growth of the pathogen in supersusceptible host tissue. In contrast, early epidermal papilla-based resistance was closely linked to H2O2 accumulation in all leaf types. In white leaves, ascorbate peroxidase (APX), glutathione-S-transferase (GST), and the cell death regulator Bax-inhibitor-1 (BI-1) showed a stronger constitutive or pathogen responsive activation, whereas glycolate oxidase (GLOX) and catalase (CAT2) expression was stronger in green leaves. We discuss supersusceptibility and symptomless growth on the basis of the histochemical and the gene expression data.
Collapse
Affiliation(s)
- Patrick Schäfer
- Interdisciplinary Research Centre for Environmental Sciences, Institute of Phytopathology and Applied Zoology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|
10
|
Pozarowski P, Halicka DH, Darzynkiewicz Z. NF-kappaB inhibitor sesquiterpene parthenolide induces concurrently atypical apoptosis and cell necrosis: difficulties in identification of dead cells in such cultures. Cytometry A 2003; 54:118-24. [PMID: 12879458 DOI: 10.1002/cyto.a.10057] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Apoptosis and necrosis ("accidental cell death") are distinct modes of cell death. The feature that often distinguishes apoptotic from necrotic cells is preservation of the plasma membrane integrity, reflected by ability of the former cells to exclude cationic dyes such as propidium iodide (PI) for a certain length of time. During necrosis, the plasma membrane is rapidly ruptured and necrotic cells stain intensely with PI. While studying cytostatic effects of the anti-inflammatory sesquiterpene parthenolide (PRT), we have noticed that, concurrent with apoptosis, the cells were dying by necrosis in the same cultures. Furthermore, because apoptosis was atypical, reflected by rapid loss of plasma membrane integrity, it was difficult to distinguish apoptotic from necrotic cells based on this feature. METHODS Three methods were used to distinguish apoptosis from necrosis: (a) HL-60 cells treated with PRT were subjected to analysis of caspases activation using antibody that detects activated (cleaved) caspase-3, (b) apoptotic cells were identified by binding of fluorochrome-labeled inhibitor of caspases FAM-VAD-FMK combined with the PI exclusion assay, and (c) cellular DNA and RNA were differentially stained with acridine orange (AO). RESULTS Apoptotic cells were characterized by (a) caspase-3 activation detected immunocytochemically and (b) binding of FAM-VAD-FMK followed by or concurrent with (c) loss of ability to exclude PI, (d) deficit in DNA content, and (e) relatively little changed RNA content. Necrotic cells showed (a) no evidence of caspase-3 activation, (b) no binding of FAM-VAD-FMK, (c) inability to exclude PI, (d) rapid loss of RNA, and (e) unchanged DNA content. CONCLUSIONS Identification of apoptotic cells versus necrotic cells was possible either based on the evidence of caspase-3 activation, by labeling with FAM-VAD-FMK combined with PI or by differential staining of cellular DNA and RNA with AO. The data indicate that plasma membrane appears to be one of the targets of PRT, because its integrity is lost very early during cell death, which is reflected by atypical apoptosis and by primary necrosis (lysis of the membrane).
Collapse
Affiliation(s)
- Piotr Pozarowski
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York, USA
| | | | | |
Collapse
|
11
|
Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better controldouble dagger. MOLECULAR PLANT PATHOLOGY 2002; 3:185-95. [PMID: 20569326 DOI: 10.1046/j.1364-3703.2002.00120.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Summary Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is the causal agent of common root rot, leaf spot disease, seedling blight, head blight, and black point of wheat and barley. The fungus is one of the most serious foliar disease constraints for both crops in warmer growing areas and causes significant yield losses. High temperature and high relative humidity favour the outbreak of the disease, in particular in South Asia's intensive 'irrigated wheat-rice' production systems. In this article, we review the taxonomy and worldwide distribution, as well as strategies to counteract the disease as an emerging threat to cereal production systems. We also review the current understanding of the cytological and molecular aspects of the interaction of the fungus with its cereal hosts, which makes B. sorokiniana a model organism for studying plant defence responses to hemibiotrophic pathogens. The contrasting roles of cell death and H(2)O(2) generation in plant defence during biotrophic and necrotrophic fungal growth phases are discussed.
Collapse
Affiliation(s)
- Jagdish Kumar
- Directorate of Wheat Research, Agrasen Road, Karnal 132001, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel KH. A Compromised Mlo Pathway Affects the Response of Barley to the Necrotrophic Fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and Its Toxins. PHYTOPATHOLOGY 2001; 91:127-33. [PMID: 18944385 DOI: 10.1094/phyto.2001.91.2.127] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT In search of new durable disease resistance traits in barley to control leaf spot blotch disease caused by the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus), we developed macroscopic and microscopic scales to judge spot blotch disease development on barley. Infection of barley was associated with cell wall penetration and accumulation of hydrogen peroxide. The latter appeared to take place in cell wall swellings under fungal penetration attempts as well as during cell death provoked by the necrotrophic pathogen. Additionally, we tested the influence of a compromised Mlo pathway that confers broad resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Powdery mildew-resistant genotypes with mutations at the Mlo locus (mlo genotypes) showed a higher sensitivity to infiltration of toxic culture filtrate of Bipolaris sorokiniana as compared with wild-type barley. Mutants defective in Ror, a gene required for mlo-specified powdery mildew resistance, were also more sensitive to Bipolaris sorokiniana toxins than wild-type barley but showed less symptoms than mlo5 parents. Fungal culture filtrates induced an H2O2 burst in all mutants, whereas wild-type (Mlo) barley was less sensitive. The results support the hypothesis that the barley Mlo gene product functions as a suppresser of cell death. Therefore, a compromised Mlo pathway is effective for control of biotrophic powdery mildew fungus but not for necrotrophic Bipolaris sorokiniana. We discuss the problem of finding resistance traits that are effective against both biotrophic and necrotrophic pathogens with emphasis on the role of the anti-oxidative system of plant cells.
Collapse
|