1
|
Shtykova EV, Dubrovin EV, Ksenofontov AL, Gifer PK, Petoukhov MV, Tokhtar VK, Sapozhnikova IM, Stavrianidi AN, Kordyukova LV, Batishchev OV. Structural Insights into Plant Viruses Revealed by Small-Angle X-ray Scattering and Atomic Force Microscopy. Viruses 2024; 16:427. [PMID: 38543792 PMCID: PMC10975137 DOI: 10.3390/v16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/23/2024] Open
Abstract
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Collapse
Affiliation(s)
- Eleonora V. Shtykova
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Evgeniy V. Dubrovin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Polina K. Gifer
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Maxim V. Petoukhov
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Valeriy K. Tokhtar
- Scientific and Educational Center, Botanical Garden of the National Research University “BelSU”, Belgorod 308033, Russia;
| | - Irina M. Sapozhnikova
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia;
| | - Andrey N. Stavrianidi
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| |
Collapse
|
2
|
Ksenofontov AL, Petoukhov MV, Prusov AN, Fedorova NV, Shtykova EV. Characterization of Tobacco Mosaic Virus Virions and Repolymerized Coat Protein Aggregates in Solution by Small-Angle X-Ray Scattering. BIOCHEMISTRY (MOSCOW) 2021; 85:310-317. [PMID: 32564735 DOI: 10.1134/s0006297920030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure of tobacco mosaic virus (TMV) virions and stacked disk aggregates of TMV coat protein (CP) in solution was analyzed by synchrotron-based small-angle X-ray scattering (SAXS) and negative contrast transmission electron microscopy (TEM). TMV CP aggregates had a unique stability but did not have helical symmetry. According to the TEM data, they were stacked disks associated into transversely striated rod-shaped structures 300 to 800 Å long. According to modeling based on the crystallographic model of the 4-layer TMV CP aggregate (PDB: 1EI7), the stacked disks represented hollow cylinders. The calculated SAXS pattern for the disks was compared to the experimental one over the entire measured range. The best correlation with the SAXS data was found for the model with the repeating central pair of discs; the SAXS curves for the stacked disks were virtually identical irrespectively of the protein isolation method. The positions of maxima on the scatter curves could be used as characteristic features of the studied samples; some of the peaks were assigned to the existing elements of the quaternary structure (periodicity of aggregate structure, virion helix pitch). Low-resolution structural data for the repolymerized TMV CP aggregates in solution under conditions similar to natural were produced for the first time. Analysis of such nano-size objects is essential for their application in biomedicine and biotechnology.
Collapse
Affiliation(s)
- A L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - M V Petoukhov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia. .,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - A N Prusov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - N V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - E V Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia.
| |
Collapse
|
3
|
Kraft DJ, Kegel WK, van der Schoot P. A kinetic Zipper model and the assembly of tobacco mosaic virus. Biophys J 2012; 102:2845-55. [PMID: 22735535 DOI: 10.1016/j.bpj.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
We put forward a modified Zipper model inspired by the statics and dynamics of the spontaneous reconstitution of rodlike tobacco mosaic virus particles in solutions containing the coat protein and the single-stranded RNA of the virus. An important ingredient of our model is an allosteric switch associated with the binding of the first protein unit to the origin-of-assembly domain of the viral RNA. The subsequent addition and conformational switching of coat proteins to the growing capsid we believe is catalyzed by the presence of the helical arrangement of bound proteins to the RNA. The model explains why the formation of complete viruses is favored over incomplete ones, even though the process is quasi-one-dimensional in character. We numerically solve the relevant kinetic equations and show that time evolution is different for the assembly and disassembly of the virus, the former exhibiting a time lag even if all forward rate constants are equal. We find the late-stage assembly kinetics in the presence of excess protein to be governed by a single-exponential relaxation, which agrees with available experimental data on TMV reconstruction.
Collapse
Affiliation(s)
- Daniela J Kraft
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for NanoMaterials Science, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
4
|
Lee B, Lo CT, Thiyagarajan P, Winans RE, Li X, Niu Z, Wang Q. Effect of interfacial interaction on the cross-sectional morphology of tobacco mosaic virus using GISAXS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11157-63. [PMID: 17894508 DOI: 10.1021/la7009989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We have investigated the effect of the interfacial interaction on the cross-sectional morphology of the tobacco mosaic virus (TMV) in solution and on two types of solid substrates, SiOx (polar) on Si(100) and polystyrene film (nonpolar) on Si(100), using small-angle X-ray scattering (SAXS) and grazing incidence small-angle X-ray scattering (GISAXS), respectively. Results reveal that the flexible chains at the outer surface of TMV either expand or contract depending on the nature of the substrate. Although the unfavorable interaction between the TMV and the PS causes a minimal effect, the stronger attractive interaction between the outer protein surface of TMV and the SiOx substrate induces pronounced deformation of its cross-sectional morphology.
Collapse
Affiliation(s)
- Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
| | | | | | | | | | | | | |
Collapse
|