1
|
Lee NLY, Kuan PSY, Hua QQH, Puniamoorthy N. Experimental evolution under predation reduces body size in dung flies but courtship displays persist in males (Diptera: Sepsidae). Behav Processes 2024; 220:105073. [PMID: 38917938 DOI: 10.1016/j.beproc.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Exaggerated sexual traits, such as ornaments and courtship displays, are crucial for mate acquisition in many species and are often subject to directional runaway selection. However, in the face of high predation risk, natural selection can result in a reduction of conspicuous precopulatory displays to avoid detection by potential predators. Sexual selection may then favour increased investment in inconspicuous postcopulatory traits. Here, we investigated the transgenerational effects of predation on precopulatory male courtship and postcopulatory sexual traits (testes size, sperm length) in a dung fly, Sepsis punctum (Sepsidae). Behavioural assays prior to selection document a marked decrease in male courtship displays in the presence of a predator, the Asian Ant Mantis (Odontomantis planiceps). However, after ten generations of experimental evolution, flies exhibited a marked increase in courtship, both in the absence and presence of a predator. Additionally, under sustained predation pressure, male and female body size decreased but male postcopulatory traits were not significantly affected. These results suggest that precopulatory courtship can be under strong sexual selection even in the face of predation pressure. Larger flies were more susceptible to predation, and there could be canalisation of postcopulatory traits that are crucial for fertilisation.
Collapse
Affiliation(s)
- Nicole L Y Lee
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Pamela S Y Kuan
- National Cancer Centre Singapore, 11 Hospital Crescent 169610, Singapore
| | - Qiaz Q H Hua
- Department of Ecology and Evolution, University of Adelaide, 115 Darling, North Terrace Campus, Adelaide, South Australia 5005, Australia
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
2
|
Laugen AT, Hosken DJ, Reinhold K, Schwarzenbach GA, Hoeck PEA, Bussière LF, Blanckenhorn WU, Lüpold S. Sperm competition in yellow dung flies: No consistent effect of sperm size. J Evol Biol 2022; 35:1309-1318. [PMID: 35972882 DOI: 10.1111/jeb.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.
Collapse
Affiliation(s)
- Ane T Laugen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - David J Hosken
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Klaus Reinhold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Evolutionsbiologie, Universität Bielefeld, Bielefeld, Germany
| | - Gioia A Schwarzenbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Paquita E A Hoeck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Biology and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
3
|
Sales K, Vasudeva R, Gage MJG. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201717. [PMID: 33959335 PMCID: PMC8074959 DOI: 10.1098/rsos.201717] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
With climate change creating a more volatile atmosphere, heatwaves that create thermal stress for living systems will become stronger and more frequent. Using the flour beetle Tribolium castaneum, we measure the impacts of thermal stress from experimental heatwaves in the laboratory on reproduction and survival across different insect life stages, and the extent and pace of any recovery. We exposed larvae, pupae, juvenile and mature adult male beetles to 5-day periods of heat stress where temperatures were maintained at either 40°C or 42°C, a few degrees above the 35°C optimum for this species' population productivity, and then measured survival and reproduction compared with controls at 30°C. Mortality due to thermal stress was greatest among juvenile life stages. Male reproductive function was specifically damaged by high temperatures, especially if experienced through pupal or immature life stages when complete sterility was shown at reproductive maturity; larval exposure did not damage adult male fertility. High temperatures impaired testis development and the production of viable sperm, with damage being strongest when experienced during pupal or juvenile adult stages. Despite this disruption, males recovered from heat stress and, depending on the stage of exposure, testis size, sperm production and fertility returned to normal 15-28 days after exposure. Our experiments reveal how thermal stress from heatwave conditions could impact on insect survival and reproduction across different life stages, and the potential and timescales of recovery.
Collapse
Affiliation(s)
- Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
4
|
Mahdjoub H, Blanckenhorn WU, Lüpold S, Roy J, Gourgoulianni N, Khelifa R. Fitness consequences of the combined effects of veterinary and agricultural pesticides on a non-target insect. CHEMOSPHERE 2020; 250:126271. [PMID: 32114345 DOI: 10.1016/j.chemosphere.2020.126271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Pesticides and veterinary products that are globally used in farming against pests and parasites are known to impact non-target beneficial organisms. While most studies have tested the lethal and sub-lethal effects of single chemicals, species are exposed to multiple contaminants that might interact and exacerbate the toxic responses of life-history fitness components. Here we experimentally tested an ecotoxicological scenario that is likely to be widespread in nature, with non-target dung communities being exposed both to cattle parasiticides during the larval stage and to agricultural insecticides during their adult life. We assessed the independent and combined consumptive effects of varying ivermectin and spinosad concentration on juvenile life-history and adult reproductive traits of the widespread yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Larval exposure to ivermectin prolonged development time and reduced egg-to-adult survival, body size, and the magnitude of the male-biased sexual size dimorphism. The consumption by the predatory adult flies of spinosad-contaminated prey showed an additional, independent (from ivermectin) negative effect on female clutch size, and subsequent egg hatching success, but not on the body size and sexual size dimorphism of their surviving offspring. However, there were interactive synergistic effects of both contaminants on offspring emergence and body size. Our results document adverse effects of the combination of different chemicals on fitness components of a dung insect, highlighting transgenerational effects of adult exposure to contaminants for their offspring. These findings suggest that ecotoxicological tests should consider the combination of different contaminants for more accurate eco-assessments.
Collapse
Affiliation(s)
- Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Department of Botany, 2212 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; Biodiversity Research Centre, 2212 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Hook KA, Fisher HS. Methodological considerations for examining the relationship between sperm morphology and motility. Mol Reprod Dev 2020; 87:633-649. [PMID: 32415812 PMCID: PMC7329573 DOI: 10.1002/mrd.23346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Sperm cells of all taxa share a common goal to reach and fertilize an ovum, yet sperm are one of the most diverse cell types in nature. While the structural diversity of these cells is well recognized, the functional significance of variation in sperm design remains elusive. An important function of spermatozoa is a need to migrate toward the ova, often over long distances in a foreign environment, which may include a complex and hostile female reproductive tract. Several comparative and experimental studies have attempted to address the link between sperm morphology and motility, yet the conclusions drawn from these studies are often inconsistent, even within the same taxa. Much of what we know about the functional significance of sperm design in internally fertilizing species has been gleaned from in vitro studies, for which experimental parameters often vary among studies. We propose that discordant results from these studies are in part due to a lack of consistency of methods, conditions that do not replicate those of the female reproductive tract, and the overuse of simple linear measures of sperm shape. Within this review, we provide a toolkit for imaging, quantifying, and analyzing sperm morphology and movement patterns for in vitro studies and discuss emerging approaches. Results from studies linking morphology to motility enhance our understanding of the evolution of adaptive sperm traits and the mechanisms that regulate fertility, thus offering new insights into methods used in assisted reproductive technologies in animal science, conservation and public health.
Collapse
Affiliation(s)
- Kristin A. Hook
- Department of Biology, University of Maryland, College Park, U.S.A
| | - Heidi S. Fisher
- Department of Biology, University of Maryland, College Park, U.S.A
| |
Collapse
|
6
|
Macartney EL, Crean AJ, Nakagawa S, Bonduriansky R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2019; 94:1722-1739. [PMID: 31215758 DOI: 10.1111/brv.12524] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
Theory predicts that costly sexual traits should be reduced when individuals are in poor condition (i.e. traits should exhibit condition-dependent expression). It is therefore widely expected that male ejaculate traits, such as sperm and seminal fluid, will exhibit reduced quantity and quality when dietary nutrients are limited. However, reported patterns of ejaculate condition dependence are highly variable, and there has been no comprehensive synthesis of underlying sources of such variation in condition-dependent responses. In particular, it remains unclear whether all ejaculate traits are equally sensitive to nutrient intake, and whether such traits are particularly sensitive to certain dietary nutrients, respond more strongly to nutrients during specific life stages, or respond more strongly in some taxonomic groups. We systematically reviewed these potential sources of variation through a meta-analysis across 50 species of arthropods and vertebrates (from 71 papers and 348 effect sizes). We found that overall, ejaculate traits are moderately reduced when dietary nutrients are limited, but we also detected substantial variation in responses. Seminal fluid quantity was strongly and consistently condition dependent, while sperm quantity was moderately condition dependent. By contrast, aspects of sperm quality (particularly sperm viability and morphology) were less consistently reduced under nutrient limitation. Ejaculate traits tended to respond in a condition-dependent manner to a wide range of dietary manipulations, especially to caloric and protein restriction. Finally, while all major taxa for which sufficient data exist (i.e. arthropods, mammals, fish) showed condition dependence of ejaculate traits, we detected some taxonomic differences in the life stage that is most sensitive to nutrient limitation, and in the degree of condition dependence of specific ejaculate traits. Together, these biologically relevant factors accounted for nearly 20% of the total variance in ejaculate responses to nutrient limitation. Interestingly, body size showed considerably stronger condition-dependent responses compared to ejaculate traits, suggesting that ejaculate trait expression may be strongly canalised to protect important reproductive functions, or that the cost of producing an ejaculate is relatively low. Taken together, our findings show that condition-dependence of ejaculate traits is taxonomically widespread, but there are also many interesting, biologically relevant sources of variation that require further investigation. In particular, further research is needed to understand the differences in selective pressures that result in differential patterns of ejaculate condition dependence across taxa and ejaculate traits.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Angela J Crean
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Macartney EL, Nicovich PR, Bonduriansky R, Crean AJ. Developmental diet irreversibly shapes male post-copulatory traits in the neriid fly Telostylinus angusticollis. J Evol Biol 2018; 31:1894-1902. [PMID: 30267554 DOI: 10.1111/jeb.13384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/23/2018] [Indexed: 01/17/2023]
Abstract
Nutrient availability has been shown to influence investment in many fitness-related traits, including male reproductive success. Many studies have demonstrated that a reduction in nutrient availability alters male post-copulatory trait expression, with some studies demonstrating an effect of developmental nutrients and others, an effect of adult nutrients. However, few studies have manipulated both developmental and adult nutrients in the same experiment. Therefore, it is not clear what life-stage has the greatest effect on post-copulatory trait expression, and if the effects of developmental and adult nutrients can interact. Here, we investigate effects of developmental and adult nutrition on male testes and accessory gland size, sperm movement within the female reproductive tract and sperm length in the neriid fly, Telostylinus angusticollis. We found that males fed a nutrient-poor developmental diet produced sperm with a reduced tail beat frequency and had smaller testes and accessory glands compared to males fed a nutrient-rich developmental diet. In contrast, we found no effects of adult nutrition on any traits measured, although sperm length was correlated with body size and male age but unaffected by nutrition at any stage. Therefore, investment in adult post-copulatory traits is determined early on by developmental nutrients in male neriid flies, and this effect is not altered by adult nutrient availability.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Philip R Nicovich
- ARC Centre of Excellence in Advanced Molecular Imaging and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, NSW, Australia.,Allen Institute for Brain Science, Seattle, Washington, USA
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Angela J Crean
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia.,Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Tomášek O, Albrechtová J, Němcová M, Opatová P, Albrecht T. Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge. Proc Biol Sci 2018; 284:rspb.2016.2444. [PMID: 28123091 DOI: 10.1098/rspb.2016.2444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
It has been hypothesized that carotenoid-based sexual ornamentation signals male fertility and sperm competitive ability as both ornamentation and sperm traits may be co-affected by oxidative stress, resulting in positive covariation (the 'redox-based phenotype-linked fertility hypothesis'; redox-based PLFH). On the other hand, the 'sperm competition theory' (SCT) predicts a trade-off between precopulatory and postcopulatory traits. Here, we manipulate oxidative status (using diquat dibromide) and carotenoid availability in adult zebra finch (Taeniopygia guttata) males in order to test whether carotenoid-based beak ornamentation signals, or is traded off against, sperm resistance to oxidative challenge. Initial beak colouration, but not its change during the experiment, was associated with effect of oxidative challenge on sperm velocity, such that more intense colouration predicted an increase in sperm velocity under control conditions but a decline under oxidative challenge. This suggests a long-term trade-off between ornament expression and sperm resistance to oxidative challenge. Shortening of the sperm midpiece following oxidative challenge further suggests that redox homeostasis may constrain sperm morphometry. Carotenoid supplementation resulted in fewer sperm abnormalities but had no effect on other sperm traits. Overall, our data challenge the redox-based PLFH, partially support the SCT and highlight the importance of carotenoids for normal sperm morphology.
Collapse
Affiliation(s)
- Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, v.v.i., Květná 8, Brno 60365, Czech Republic .,Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Jana Albrechtová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, v.v.i., Květná 8, Brno 60365, Czech Republic
| | - Martina Němcová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Pavlína Opatová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, v.v.i., Květná 8, Brno 60365, Czech Republic.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, The Czech Academy of Sciences, v.v.i., Květná 8, Brno 60365, Czech Republic .,Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| |
Collapse
|
9
|
Gasparini C, Lu C, Dingemanse NJ, Tuni C. Paternal‐effects in a terrestrial ectotherm are temperature dependent but no evidence for adaptive effects. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clelia Gasparini
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western Australia Crawley Australia
| | - ChuChu Lu
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Niels J. Dingemanse
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Cristina Tuni
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| |
Collapse
|
10
|
Metzler S, Heinze J, Schrempf A. Mating and longevity in ant males. Ecol Evol 2016; 6:8903-8906. [PMID: 28035278 PMCID: PMC5192810 DOI: 10.1002/ece3.2474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022] Open
Abstract
Across multicellular organisms, the costs of reproduction and self‐maintenance result in a life history trade‐off between fecundity and longevity. Queens of perennial social Hymenoptera are both highly fertile and long‐lived, and thus, this fundamental trade‐off is lacking. Whether social insect males similarly evade the fecundity/longevity trade‐off remains largely unstudied. Wingless males of the ant genus Cardiocondyla stay in their natal colonies throughout their relatively long lives and mate with multiple female sexuals. Here, we show that Cardiocondyla obscurior males that were allowed to mate with large numbers of female sexuals had a shortened life span compared to males that mated at a low frequency or virgin males. Although frequent mating negatively affects longevity, males clearly benefit from a “live fast, die young strategy” by inseminating as many female sexuals as possible at a cost to their own survival.
Collapse
Affiliation(s)
- Sina Metzler
- Zoology/Evolutionary Biology University of Regensburg Regensburg Germany; IST Austria (Institute of Science and Technology Austria) Klosterneuburg Austria
| | - Jürgen Heinze
- Zoology/Evolutionary Biology University of Regensburg Regensburg Germany
| | - Alexandra Schrempf
- Zoology/Evolutionary Biology University of Regensburg Regensburg Germany
| |
Collapse
|
11
|
Joseph PN, Sasson DA, Allen PE, Somjee U, Miller CW. Adult nutrition, but not inbreeding, affects male primary sexual traits in the leaf-footed cactus bug Narnia femorata (Hemiptera: Coreidae). Ecol Evol 2016; 6:4792-9. [PMID: 27547313 PMCID: PMC4979707 DOI: 10.1002/ece3.2246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 01/27/2023] Open
Abstract
Adverse conditions may be the norm rather than the exception in natural populations. Many populations experience poor nutrition on a seasonal basis. Further, brief interludes of inbreeding can be common as population density fluctuates and because of habitat fragmentation. Here, we investigated the effects of poor nutrition and inbreeding on traits that can be very important to reproductive success and fitness in males: testes mass, sperm concentration, and sperm viability. Our study species was Narnia femorata, a species introduced to north-central Florida in the 1950s. This species encounters regular, seasonal changes in diet that can have profound phenotypic effects on morphology and behavior. We generated inbred and outbred individuals through a single generation of full-sibling mating or outcrossing, respectively. All juveniles were provided a natural, high-quality diet of Opuntia humifusa cactus cladode with fruit until they reached adulthood. New adult males were put on a high- or low-quality diet for at least 21 days before measurements were taken. As expected, the low-quality diet led to significantly decreased testes mass in both inbred and outbred males, although there were surprisingly no detectable effects on sperm traits. We did not find evidence that inbreeding affected testes mass, sperm concentration, and sperm viability. Our results highlight the immediate and overwhelming effects of nutrition on testes mass, while suggesting that a single generation of inbreeding might not be detrimental for primary sexual traits in this particular population.
Collapse
Affiliation(s)
- Paul N Joseph
- Entomology and Nematology Department University of Florida 1881 Natural Area Drive Gainesville Florida 32608
| | - Daniel A Sasson
- Whitney Laboratory for Marine Bioscience University of Florida 9505 Ocean Shore Blvd St. Augustine Florida 32080
| | - Pablo E Allen
- Entomology and Nematology Department University of Florida 1881 Natural Area Drive Gainesville Florida 32608
| | - Ummat Somjee
- Entomology and Nematology Department University of Florida 1881 Natural Area Drive Gainesville Florida 32608
| | - Christine W Miller
- Entomology and Nematology Department University of Florida 1881 Natural Area Drive Gainesville Florida 32608
| |
Collapse
|
12
|
Dobler R, Reinhardt K. Heritability, evolvability, phenotypic plasticity and temporal variation in sperm-competition success of Drosophila melanogaster. J Evol Biol 2016; 29:929-41. [PMID: 26990919 DOI: 10.1111/jeb.12858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
Sperm-competition success (SCS) is seen as centrally important for evolutionary change: superior fathers sire superior sons and thereby inherit the traits that make them superior. Additional hypotheses, that phenotypic plasticity in SCS and sperm ageing explain variation in paternity, are less considered. Even though various alleles have individually been shown to be correlated with variation in SCS, few studies have addressed the heritability, or evolvability, of overall SCS. Those studies that have addressed found low or no heritability and have not examined evolvability. They have further not excluded phenotypic plasticity, and temporal effects on SCS, despite their known dramatic effects on sperm function. In Drosophila melanogaster, we found that both standard components of sperm competition, sperm defence and sperm offence, showed nonsignificant heritability across several offspring cohorts. Instead, our analysis revealed, for the first time, the existence of phenotypic plasticity in SCS across an extreme environment (5% CO2 ), and an influence of sperm ageing. Evolvability of SCS was substantial for sperm defence but weak for sperm offence. Our results suggest that the paradigm of explaining evolution by sperm competition is more complex and will benefit from further experimental work on the heritability or evolvability of SCS, measuring phenotypic plasticity, and separating the effects of sperm competition and sperm ageing.
Collapse
Affiliation(s)
- R Dobler
- Department of Biology, Applied Zoology, TU Dresden, Dresden, Germany.,University of Tübingen, Institute of Evolution and Ecology, Tübingen, Germany
| | - K Reinhardt
- Department of Biology, Applied Zoology, TU Dresden, Dresden, Germany.,University of Tübingen, Institute of Evolution and Ecology, Tübingen, Germany
| |
Collapse
|
13
|
Su XH, Chen JL, Zhang XJ, Xue W, Liu H, Xing LX. Testicular development and modes of apoptosis during spermatogenesis in various castes of the termite Reticulitermes labralis (Isoptera:Rhinotermitidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:630-638. [PMID: 26344723 DOI: 10.1016/j.asd.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
The separation of reproductive and non-reproductive roles based on caste differentiation is the most prominent characteristic of termites. However, little is known about the mechanism of male reproductive division that underlies caste differentiation. In the present study, testicular development and stage-specific apoptotic patterns were investigated and compared during spermatogenesis in reproductives, workers and soldiers of the termite Reticulitermes labralis. The results showed that male workers were divided into two types, the workers with spermatozoa (WS) and the workers without spermatozoa (WN). Spermatogenesis in WN and soldiers arrested at the spermatocyte stage. Moreover, there were significant differences in testicular size and spermatogenesis among the various castes. The mode of apoptosis in late instar WS was similar to the reproductives, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) analysis. First, the majority of apoptotic cells were spermatogonia, and the spermatogonia of both late instar WS and reproductives exhibited lower apoptotic rates compared with late instar WN and soldiers. Second, the spermatocytes and spermatids showed very little apoptosis in the late instar WS and reproductives, and no TUNEL signal was detected in any of the examined spermatozoa. Our findings suggest that the male workers undergo a basal developmental schema comprising two undifferentiated larval instars, followed by a bifurcated development into either (i) the sexual lineage, in which the workers are able to provide normal spermatozoa to queens, or (ii) the neuter lineage, in which the male workers lose reproductive options. The level of testicular development may explain the significant discrepancies in reproductive capacity among the reproductives, workers and soldiers and reveal the reproductive division in male workers. These differences are controlled by apoptosis during early spermatogenesis.
Collapse
Affiliation(s)
- Xiao Hong Su
- College of Life Sciences, Northwest University, Xi'an, China.
| | - Jiao Ling Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiao Jing Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wei Xue
- College of Life Sciences, Northwest University, Xi'an, China
| | - He Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lian Xi Xing
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
14
|
Marshall DJ. Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. ACTA ACUST UNITED AC 2015; 218:107-13. [PMID: 25568457 DOI: 10.1242/jeb.106427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Traditionally, it has been assumed that sperm are a vehicle for genes and nothing more. As such, the only source of variance in offspring phenotype via the paternal line has been genetic effects. More recently, however, it has been shown that the phenotype or environment of fathers can affect the phenotype of offspring, challenging traditional theory with implications for evolution, ecology and human in vitro fertilisation. Here, I review sources of non-genetic variation in the sperm phenotype and evidence for co-variation between sperm and offspring phenotypes. I distinguish between two environmental sources of variation in sperm phenotype: the pre-release environment and the post-release environment. Pre-release, sperm phenotypes can vary within species according to male phenotype (e.g. body size) and according to local conditions such as the threat of sperm competition. Post-release, the physicochemical conditions that sperm experience, either when freely spawned or when released into the female reproductive tract, can further filter or modify sperm phenotypes. I find evidence that both pre- and post-release sperm environments can affect offspring phenotype; fertilisation is not a new beginning – rather, the experiences of sperm with the father and upon release can drive variation in the phenotype of the offspring. Interestingly, there was some evidence for co-variation between the stress resistance of sperm and the stress resistance of offspring, though more studies are needed to determine whether such effects are widespread. Overall, it appears that environmentally induced covariation between sperm and offspring phenotypes is non-negligible and further work is needed to determine their prevalence and strength.
Collapse
Affiliation(s)
- Dustin J Marshall
- School of Biological Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
15
|
Blengini CS, Sergio N, Gabriela C, Giojalas LC, Margarita C. Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards. Ecol Evol 2014; 4:4080-92. [PMID: 25505535 PMCID: PMC4242561 DOI: 10.1002/ece3.1262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022] Open
Abstract
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| | - Naretto Sergio
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| | - Cardozo Gabriela
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| | - Laura C Giojalas
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET, Universidad Nacional de Córdoba Av.Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
| | - Chiaraviglio Margarita
- Laboratorio de Biología del Comportamiento, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Diversidad y Ecología Animal (IDEA) CONICET, Universidad Nacional de Córdoba Av. Vélez Sársfield 299, X5000JJC, Córdoba, Argentina
| |
Collapse
|
16
|
Haeussler E, Schmera D, Baur B. Parasitic mites influence intra- and interpopulational variation in sperm length in a simultaneous hermaphrodite land snail (Gastropoda: Helicidae). Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ellen Haeussler
- Section of Conservation Biology; Department of Environmental Sciences; University of Basel; St. Johanns-Vorstadt 10 CH-4056 Basel Switzerland
| | - Denes Schmera
- Section of Conservation Biology; Department of Environmental Sciences; University of Basel; St. Johanns-Vorstadt 10 CH-4056 Basel Switzerland
| | - Bruno Baur
- Section of Conservation Biology; Department of Environmental Sciences; University of Basel; St. Johanns-Vorstadt 10 CH-4056 Basel Switzerland
| |
Collapse
|
17
|
Dallai R. Overview on spermatogenesis and sperm structure of Hexapoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:257-290. [PMID: 24732045 DOI: 10.1016/j.asd.2014.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The main characteristics of the sperm structure of Hexapoda are reported in the review. Data are dealing with the process of spermatogenesis, including the aberrant models giving rise to a reduced number of sperm cells. The sperm heteromorphism and the giant sperm exceeding the usual sperm size for length and width are considered. The characteristics of several components of a typical insect sperm are described: the plasma membrane and its glycocalyx, the nucleus, the centriole region and the centriole adjunct, the accessory bodies, the mitochondrial derivatives and the flagellar axoneme. Finally, a detailed description of the main sperm features of each hexapodan group is given with emphasis on the flagellar components considered to have great importance in phylogenetic considerations. This study may be also useful to those requiring an introduction to hexapod reproduction.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
18
|
Vasudeva R, Deeming DC, Eady PE. Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus. J Evol Biol 2014; 27:1811-8. [DOI: 10.1111/jeb.12431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
Affiliation(s)
- R. Vasudeva
- School of Life Sciences; University of Lincoln; Lincoln UK
| | - D. C. Deeming
- School of Life Sciences; University of Lincoln; Lincoln UK
| | - P. E. Eady
- School of Life Sciences; University of Lincoln; Lincoln UK
| |
Collapse
|
19
|
Grazer VM, Demont M, Michalczyk Ł, Gage MJG, Martin OY. Environmental quality alters female costs and benefits of evolving under enforced monogamy. BMC Evol Biol 2014; 14:21. [PMID: 24499414 PMCID: PMC3922901 DOI: 10.1186/1471-2148-14-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/30/2014] [Indexed: 01/05/2023] Open
Abstract
Background Currently many habitats suffer from quality loss due to environmental change. As a consequence, evolutionary trajectories might shift due to environmental effects and potentially increase extinction risk of resident populations. Nevertheless, environmental variation has rarely been incorporated in studies of sexual selection and sexual conflict, although local environments and individuals’ condition undoubtedly influence costs and benefits. Here, we utilise polyandrous and monogamous selection lines of flour beetles, which evolved in presence or absence of sexual selection for 39 generations. We specifically investigated effects of low vs. standard food quality (i.e. stressful vs. benign environments) on reproductive success of cross pairs between beetles from the contrasting female and male selection histories to assess gender effects driving fitness. Results We found a clear interaction of food quality, male selection history and female selection history. Monogamous females generally performed more poorly than polyandrous counterparts, but reproductive success was shaped by selection history of their mates and environmental quality. When monogamous females were paired with polyandrous males in the standard benign environment, females seemed to incur costs, possibly due to sexual conflict. In contrast, in the novel stressful environment, monogamous females profited from mating with polyandrous males, indicating benefits of sexual selection outweigh costs. Conclusions Our findings suggest that costs and benefits of sexually selected adaptations in both sexes can be profoundly altered by environmental quality. With regard to understanding possible impacts of environmental change, our results further show that the ecology of mating systems and associated selection pressures should be considered in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Y Martin
- ETH Zürich, Institute of Integrative Biology, D-USYS, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| |
Collapse
|
20
|
Soper DM, Neiman M, Savytskyy OP, Zolan ME, Lively CM. Spermatozoa Production by Triploid Males in the New Zealand Freshwater Snail Potamopyrgus antipodarum.. Biol J Linn Soc Lond 2013; 110:227-234. [PMID: 24307744 PMCID: PMC3844136 DOI: 10.1111/bij.12085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Abstract
Asexual lineages derived from dioecious taxa are typically assumed to be all female. Even so, asexual females from a variety of animal taxa occasionally produce males. The existence of these males sets the stage for potential gene flow across asexual lineages as well as between sexual and asexual lineages. A recent study showed that asexual triploid female Potamopyrgus antipodarum, a New Zealand freshwater snail often used as a model to study sexual reproduction, occasionally produce triploid male offspring. Here, we show that these triploid male P. antipodarum 1) have testes that produce morphologically normal sperm, 2) make larger sperm cells that contain more nuclear DNA than the sperm produced by diploid sexual males, and 3) produce sperm that range in DNA content from haploid to diploid, and are often aneuploid. Analysis of meiotic chromosomes of triploid males showed that aberrant pairing during prophase I likely accounts for the high variation in DNA content among sperm. These results indicate that triploid male P. antipodarum produce sperm, but the extent to which these sperm are able to fertilize female ova remains unclear. Our results also suggest that the general assumption of sterility in triploid males should be more closely examined in other species in which such males are occasionally produced.
Collapse
Affiliation(s)
- Deanna M. Soper
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Miriam E. Zolan
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Curt M. Lively
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
21
|
|
22
|
Mamina VP. Morphofunctional analysis of testes and sperm in the assessment of male reproductive success in the bank vole (Clethrionomys glareolus). BIOL BULL+ 2012. [DOI: 10.1134/s1062359012050093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
MAGALHÃES S, BLANCHET E, EGAS M, OLIVIERI I. Environmental effects on the detection of adaptation. J Evol Biol 2011; 24:2653-62. [DOI: 10.1111/j.1420-9101.2011.02388.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Thüler K, Bussière LF, Postma E, Ward PI, Blanckenhorn WU. Genetic and environmental sources of covariance among internal reproductive traits in the yellow dung fly. J Evol Biol 2011; 24:1477-86. [PMID: 21545422 DOI: 10.1111/j.1420-9101.2011.02280.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substantial inter- and intraspecific variation is found in reproductive traits, but the evolutionary implications of this variation remain unclear. One hypothesis is that natural selection favours female reproductive morphology that allows females to control mating and fertilization and that diverse male reproductive traits arise as counter adaptations to subvert this control. Such co-evolution predicts the establishment of genetic correlations between male and female reproductive traits that closely interact during mating. Therefore, we measured phenotypic and genetic correlations between male and female reproductive tract characteristics in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae), using a nested half-sib breeding experiment. We found significant heritabilities for the size of most reproductive tract traits investigated in both females (spermathecae and their ducts, accessory glands and their ducts) and males (testis size but not sperm length). Within the sexes, phenotypic and genetic correlations were mostly nil or positive, suggesting functional integration of or condition-dependent investment in internal reproductive traits. Negative intrasexual genetic correlations, potentially suggestive of resource allocation trade-offs, were not evident. Intersexual genetic correlations were mostly positive, reflecting expected allometries between male and female morphologies. Most interestingly, testis size correlated positively with female accessory gland size and duct length, potentially indicative of a co-evolutionary arms race. We discuss these and alternative explanations for these patterns of genetic covariance.
Collapse
Affiliation(s)
- K Thüler
- Zoological Museum, Institute for Evolutionary Biology and Environmental Studies, Winterthurerstrasse, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Tourmente M, Giojalas LC, Chiaraviglio M. Sperm Parameters Associated with Reproductive Ecology in Two Snake Species. HERPETOLOGICA 2011. [DOI: 10.1655/herpetologica-d-10-00052.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Gay L, Hosken DJ, Vasudev R, Tregenza T, Eady PE. Sperm competition and maternal effects differentially influence testis and sperm size in Callosobruchus maculatus. J Evol Biol 2009; 22:1143-50. [PMID: 19309491 DOI: 10.1111/j.1420-9101.2009.01724.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The evolutionary factors affecting testis size are well documented, with sperm competition being of major importance. However, the factors affecting sperm length are not well understood; there are no clear theoretical predictions and the empirical evidence is inconsistent. Recently, maternal effects have been implicated in sperm length variation, a finding that may offer insights into its evolution. We investigated potential proximate and microevolutionary factors influencing testis and sperm size in the bruchid beetle Callosobruchus maculatus using a combined approach of an artificial evolution experiment over 90 generations and an environmental effects study. We found that while polyandry seems to select for larger testes, it had no detectable effect on sperm length. Furthermore, population density, a proximate indicator of sperm competition risk, was not significantly associated with sperm length or testis size variation. However, there were strong maternal effects influencing sperm length.
Collapse
Affiliation(s)
- L Gay
- Center for Ecology and Conservation, University of Exeter Cornwall, Tremough Campus, Penryn, UK.
| | | | | | | | | |
Collapse
|
27
|
MORROW EH, LEIJON A, MEERUPATI A. Hemiclonal analysis reveals significant genetic, environmental and genotype × environment effects on sperm size inDrosophila melanogaster. J Evol Biol 2008; 21:1692-702. [DOI: 10.1111/j.1420-9101.2008.01585.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Marks JA, Biermann CH, Eanes WF, Kryvi H. Sperm polymorphism within the sea urchin Strongylocentrotus droebachiensis: divergence between Pacific and Atlantic oceans. THE BIOLOGICAL BULLETIN 2008; 215:115-125. [PMID: 18840772 DOI: 10.2307/25470692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The rapid evolution of traits related to fertilization such as sperm morphology may be pivotal in the evolution of reproductive barriers and speciation. The sea urchin Strongylocentrotus droebachiensis has a circumarctic distribution and shows substantial genetic subdivision between northeastern Atlantic populations and northwestern Atlantic and Pacific populations. Using transmission electron microscopy, we show here that sperm shape, size, and ultrastructure differ markedly among populations of S. droebachiensis from different oceans and reflect patterns of genetic divergence. Sperm nuclei from northwestern Atlantic and Pacific populations were longer and narrower than those from the northeastern Atlantic. We additionally demonstrate population-level differences in the amount and location of filamentous actin (F-actin) prior to the occurrence of the acrosome reaction. Sperm from Pacific and northwest Atlantic populations differed from that of all other echinoids examined in that intact sperm contains a partly preformed acrosomal process, a structure more closely resembling the acrosomal rod seen in some molluscs. Immunofluorescent studies using anti-bindin antibodies and the F-actin-specific stain phalloidin confirmed these findings. Divergence of reproductive traits such as sperm morphology may be related to divergence in gamete compatibility and genetic divergence, and could represent the first stages of speciation in free-spawning marine invertebrates.
Collapse
Affiliation(s)
- Jessica A Marks
- Department of Biology, University of Bergen, N-5007 Bergen, Norway.
| | | | | | | |
Collapse
|
29
|
Immler S, Calhim S, Birkhead TR. Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 2008; 62:1538-43. [PMID: 18384656 DOI: 10.1111/j.1558-5646.2008.00393.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sperm competition is an important force driving the evolution of sperm design and function. Inter- and intraspecific variation in sperm design are strongly influenced by the risk of sperm competition in many taxa. In contrast, the variation among sperm of one male (intramale variation) is less well understood. We investigated intramale variation in sperm design in passerine birds and found that risk of sperm competition is negatively associated with intramale variation. This result is the first clear evidence that variation among sperm within an individual male is influenced by postcopulatory sexual selection. Our finding has important implications for male traits under pre- and postcopulatory sexual selection.
Collapse
Affiliation(s)
- Simone Immler
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S102TN, United Kingdom.
| | | | | |
Collapse
|
30
|
Rudolfsen G, Müller R, Urbach D, Wedekind C. Predicting the mating system from phenotypic correlations between life-history and sperm quality traits in the Alpine whitefish Coregonus zugensis. Behav Ecol Sociobiol 2007. [DOI: 10.1007/s00265-007-0480-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
ENGQVIST L. Genetic variance and genotype reaction norms in response to larval food manipulation for a trait important in scorpionfly sperm competition. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01336.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Engels S, Sauer KP. Energy beyond the pupal stage: larval nutrition and its long-time consequences for male mating performance in a scorpionfly. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:633-8. [PMID: 17572436 DOI: 10.1016/j.jinsphys.2007.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 05/15/2023]
Abstract
The basic requirement for selection to take effect is variation in fitness relevant traits among individuals of a population. This study is concerned with the question whether environmental conditions met during an early phase of life history that is dominated by the natural component of selection will affect traits and behaviour in a sexual selection context after metamorphosis in a holometabolous insect species. We examined the effects of nutrition as a proximate factor responsible for intrasexual phenotypic variation in the mating performance of male Panorpa vulgaris (Mecoptera: Panorpidae). For this purpose, we manipulated food availability during larval development as well as during adulthood. To obtain matings and to increase their reproductive success males must secrete salivary masses which are then consumed by the females during copulation. The results of the present study are consistent with those of previous studies demonstrating a strong effect of nutrition during adulthood on various fitness relevant traits (salivary gland development, saliva investment in copulations, etc.). But moreover, we could show that food availability during larval development affected male body weight and that there was an interaction between larval and adult diet affecting salivary gland weight relative to body weight. Therefore, food availability during the larval stage can become an important and limiting factor for salivary gland development (and mating success) depending on food availability during adulthood. Several other variables (number of salivary masses, copulation duration, salivary mass weight and saliva investment) seemed not to be associated with larval nutrition.
Collapse
Affiliation(s)
- Sierk Engels
- Institut für Evolutionsbiologie und Okologie, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany.
| | | |
Collapse
|
33
|
Ward PI. Postcopulatory Selection in the Yellow Dung Fly Scathophaga stercoraria (L.) and the Mate‐Now‐Choose‐Later Mechanism of Cryptic Female Choice. ADVANCES IN THE STUDY OF BEHAVIOR 2007. [DOI: 10.1016/s0065-3454(07)37007-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Amitin EG, Pitnick S. Influence of developmental environment on male- and female-mediated sperm precedence in Drosophila melanogaster. J Evol Biol 2007; 20:381-91. [PMID: 17210031 DOI: 10.1111/j.1420-9101.2006.01184.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Length of the sperm flagellum and of the female's primary sperm-storage organ, the seminal receptacle (SR), exhibit a pattern of rapid correlated evolution in Drosophila and other lineages. Experimental evolution studies with Drosophila melanogaster indicate that these traits have coevolved through sexual selection, with length of the SR representing the proximal basis of female sire discrimination, biasing paternity according to sperm length. Here, we examine the impact of experimentally varying the developmental environment, including larval density and larval and adult nutrition, on sperm length, SR length and on the pattern of sperm precedence. Expression of SR length was far more sensitive to variation among developmental environments than was sperm length. Nevertheless, there was striking co-variation in sperm and SR length. The developmental environment of both females and second males, but not first males, significantly contributed to variation in male competitive fertilization success.
Collapse
Affiliation(s)
- E G Amitin
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA.
| | | |
Collapse
|
35
|
FOX CW, STILLWELL RC, WALLIN WG, HITCHCOCK LJ. Temperature and host species affect nuptial gift size in a seed-feeding beetle. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01197.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Skinner AM, Watt PJ. Phenotypic correlates of spermatozoon quality in the guppy, Poecilia reticulata. Behav Ecol 2006. [DOI: 10.1093/beheco/arl049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
|
38
|
Schulte-Hostedde AI, Montgomerie R. Intraspecific variation in ejaculate traits of the northern watersnake (Nerodia sipedon). J Zool (1987) 2006. [DOI: 10.1111/j.1469-7998.2006.00101.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Among- and within-population variation in sperm quality in the simultaneously hermaphroditic land snail Arianta arbustorum. Behav Ecol Sociobiol 2006. [DOI: 10.1007/s00265-006-0165-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
|
41
|
Sperm traits of the quacking frog, Crinia georgiana: intra- and interpopulation variation in a species with a high risk of sperm competition. Behav Ecol Sociobiol 2005. [DOI: 10.1007/s00265-005-0062-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
|
43
|
Minder AM, Hosken DJ, Ward PI. Co-evolution of male and female reproductive characters across the Scathophagidae (Diptera). J Evol Biol 2005; 18:60-9. [PMID: 15669961 DOI: 10.1111/j.1420-9101.2004.00799.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sperm morphometry is extremely variable across species, but a general adaptive explanation for this diversity is lacking. As sperm must function within the female, variation in sperm form may be associated with variation in female reproductive tract morphology. We investigated this and other potential evolutionary associations between male and female reproductive characters across the Scathophagidae. Sperm length was positively associated with the length of the spermathecal (sperm store) ducts, indicating correlated evolution between the two. No association was found between sperm length and spermathecal size. However, the size of the spermathecae was positively associated with testis size indicating co-evolution between male investment in sperm production and female sperm storage capacity. Furthermore, species with a higher degree of polyandry (larger testes) had longer spermathecal ducts. However, no associations between sperm length or length variation and testis size were found which suggests greater sperm competition sensu stricto does not select for longer sperm.
Collapse
Affiliation(s)
- A M Minder
- Zoology Museum, The University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
44
|
Bernasconi G, Hellriegel B. Fertilization competence and sperm size variation in sperm-heteromorphic insects. Evol Ecol 2005. [DOI: 10.1007/s10682-004-7594-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
BLANCKENHORN WU, HELLRIEGEL B, HOSKEN DJ, JANN P, ALTWEGG R, WARD PI. Does testis size track expected mating success in yellow dung flies? Funct Ecol 2004. [DOI: 10.1111/j.0269-8463.2004.00864.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Fischer K, Eenhoorn E, Bot ANM, Brakefield PM, Zwaan BJ. Cooler butterflies lay larger eggs: developmental plasticity versus acclimation. Proc Biol Sci 2003; 270:2051-6. [PMID: 14561294 PMCID: PMC1691478 DOI: 10.1098/rspb.2003.2470] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints.
Collapse
Affiliation(s)
- Klaus Fischer
- Institute of Biology, Leiden University, PO Box 9516, NL-2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Schärer L, Ladurner P. Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc Biol Sci 2003; 270:935-41. [PMID: 12803908 PMCID: PMC1691333 DOI: 10.1098/rspb.2002.2323] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sex allocation theory for simultaneous hermaphrodites predicts an influence of the mating group size on sex allocation. Mating group size may depend on the size of the group in which an individual lives, or on the density, but studies to date have not distinguished between the two factors. We performed an experiment in which we raised a transparent simultaneous hermaphrodite, the flatworm Macrostomum sp., in different group sizes (pairs, triplets, quartets and octets) and in different enclosure sizes (small and large). This design allows us to differentiate between the effects of group size and density. After worms reached maturity we determined their reproductive allocation patterns from microscopic images taken in vivo. The results suggest that the mating group size is a function of the group size, and not of the density. They support the shift to higher male allocation in larger mating groups predicted by sex allocation theory. To our knowledge, this is the first study that unambiguously shows phenotypically plastic sex allocation in response to mating group size in a simultaneous hermaphrodite.
Collapse
Affiliation(s)
- Lukas Schärer
- Department of Evolutionary Biology, Institute of Animal Evolution and Ecology, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany.
| | | |
Collapse
|
48
|
|