1
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
2
|
de Oliveira AM, Souza GM, Toma GA, Dos Santos N, Dos Santos RZ, Goes CAG, Deon GA, Setti PG, Porto-Foresti F, Utsunomia R, Gunski RJ, Del Valle Garnero A, Herculano Correa de Oliveira E, Kretschmer R, Cioffi MDB. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome 2024; 67:109-118. [PMID: 38316150 DOI: 10.1139/gen-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
3
|
Kretschmer R, Toma GA, Deon GA, dos Santos N, dos Santos RZ, Utsunomia R, Porto-Foresti F, Gunski RJ, Garnero ADV, Liehr T, de Oliveira EHC, de Freitas TRO, Cioffi MDB. Satellitome Analysis in the Southern Lapwing ( Vanellus chilensis) Genome: Implications for SatDNA Evolution in Charadriiform Birds. Genes (Basel) 2024; 15:258. [PMID: 38397247 PMCID: PMC10887557 DOI: 10.3390/genes15020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Gustavo A. Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| | - Natalia dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, SP, Brazil; (N.d.S.); (R.Z.d.S.); (R.U.); (F.P.-F.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (R.J.G.); (A.D.V.G.)
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (R.J.G.); (A.D.V.G.)
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, University Hospital Jena, 07747 Jena, Germany
| | - Edivaldo Herculano Corra de Oliveira
- Laboratório de Citogenô mica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (G.A.T.); (G.A.D.); (M.d.B.C.)
| |
Collapse
|
4
|
Nagao K, Tanaka Y, Kajitani R, Toyoda A, Itoh T, Kubota S, Goto Y. Bioinformatic and fine-scale chromosomal mapping reveal the nature and evolution of eliminated chromosomes in the Japanese hagfish, Eptatretus burgeri, through analysis of repetitive DNA families. PLoS One 2023; 18:e0286941. [PMID: 37639389 PMCID: PMC10461843 DOI: 10.1371/journal.pone.0286941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.
Collapse
Affiliation(s)
- Kohei Nagao
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoshiki Tanaka
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Souichirou Kubota
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yuji Goto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
5
|
Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 2023; 32:1288-1305. [PMID: 35488497 DOI: 10.1111/mec.16484] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Mozes P K Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Romanenko SA, Prokopov DY, Proskuryakova AA, Davletshina GI, Tupikin AE, Kasai F, Ferguson-Smith MA, Trifonov VA. The Cytogenetic Map of the Nile Crocodile ( Crocodylus niloticus, Crocodylidae, Reptilia) with Fluorescence In Situ Localization of Major Repetitive DNAs. Int J Mol Sci 2022; 23:13063. [PMID: 36361851 PMCID: PMC9656864 DOI: 10.3390/ijms232113063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/16/2024] Open
Abstract
Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.
Collapse
Affiliation(s)
- Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Anastasia A. Proskuryakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Guzel I. Davletshina
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, The National Institute of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki 567-0085, Osaka, Japan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Kulak M, Komissarov A, Fillon V, Tsukanova K, Saifitdinova A, Galkina S. Genome organization of major tandem repeats and their specificity for heterochromatin of macro- and microchromosomes in Japanese quail. Genome 2022; 65:391-403. [PMID: 35776982 DOI: 10.1139/gen-2022-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tandemly repeated DNAs form heterochromatic regions of chromosomes, including the vital centromeric chromatin. Despite the progress in new genomic technologies tandem repeats remain poorly deciphered and need targeted analysis in the species of interest. The Japanese quail is one of the highest-producing poultry species as well as a model organism. Its genome differs by a noticeable accumulation of heterochromatin, which led to an increase by 1/7 compared to the chicken genome size. Prominent heterochromatin blocks occupy the short arms of acrocentric macrochromosomes and of microchromosomes. We have applied de novo repeat finder approach to unassembled raw reads of the Japanese quail genome. We identified the 20 most common tandem repeats with the abundance >1 Mb, which represent about 4.8% of the genome. We found that tandem repeat CjapSAT primarily contribute to the centromeric regions of the macrochromosomes CJA1-8. Cjap31B together with previously characterized BglII make up centromere regions of microchromosomes and W chromosome. Other repeats populate heterochromatin of microchromosomal short arms in unequal proportions, as revealed by FISH. The Cjap84A, Cjap408A and CjapSAT repeat sequences show similarities with retrotransposon motifs. This suggests that retroelements may have played a crucial role in the distribution of repeats throughout the Japanese quail genome.
Collapse
Affiliation(s)
- Maria Kulak
- Saint Petersburg State University, Saint Petersburg, Russian Federation;
| | | | - Valerie Fillon
- INRA Toulouse-Occitanie, Castanet Tolosan, Occitanie, France;
| | - Kseniya Tsukanova
- Saint Petersburg State University, Saint Petersburg, Russian Federation;
| | - Alsu Saifitdinova
- Herzen State Pedagogical University of Russia, 104720, Saint Petersburg, Russian Federation;
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation;
| |
Collapse
|
8
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Liu J, Wang Z, Li J, Xu L, Liu J, Feng S, Guo C, Chen S, Ren Z, Rao J, Wei K, Chen Y, Jarvis ED, Zhang G, Zhou Q. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res 2021; 31:497-511. [PMID: 33408157 PMCID: PMC7919449 DOI: 10.1101/gr.271569.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
Emu and other ratites are more informative than any other birds in reconstructing the evolution of the ancestral avian or vertebrate karyotype because of their much slower rate of genome evolution. Here, we generated a new chromosome-level genome assembly of a female emu, and estimated the tempo of chromosome evolution across major avian phylogenetic branches, by comparing it to chromosome-level genome assemblies of 11 other bird and one turtle species. We found ratites exhibited the lowest numbers of intra- and inter-chromosomal changes among birds since their divergence with turtles. The small-sized and gene-rich emu microchromosomes have frequent inter-chromosomal contacts that are associated with housekeeping genes, which appears to be driven by clustering their centromeres in the nuclear interior, away from the macrochromosomes in the nuclear periphery. Unlike nonratite birds, only less than one-third of the emu W Chromosome regions have lost homologous recombination and diverged between the sexes. The emu W is demarcated into a highly heterochromatic region (WS0) and another recently evolved region (WS1) with only moderate sequence divergence with the Z Chromosome. WS1 has expanded its inactive chromatin compartment, increased chromatin contacts within the region, and decreased contacts with the nearby regions, possibly influenced by the spreading of heterochromatin from WS0. These patterns suggest that alteration of chromatin conformation comprises an important early step of sex chromosome evolution. Overall, our results provide novel insights into the evolution of avian genome structure and sex chromosomes in three-dimensional space.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China
| | - Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Jiaqi Liu
- Wuhan Gooalgene Technology Company, Wuhan 430070, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shengchan Chen
- Longteng Ecological Culture Company, Limited, Zhashui 711400, China
| | - Zhanjun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Yuezhou Chen
- Jianzhou Poultry Industry Company, Limited, Yong'an 366000, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
10
|
Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species. PLoS One 2019; 14:e0214028. [PMID: 30913221 PMCID: PMC6435179 DOI: 10.1371/journal.pone.0214028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 01/22/2023] Open
Abstract
The highly repetitive DNA sequence of centromeric heterochromatin is an effective molecular cytogenetic marker for investigating genomic compartmentalization between macrochromosomes and microchromosomes in birds. We isolated four repetitive sequence families of centromeric heterochromatin from three Anseriformes species, viz., domestic duck (Anas platyrhynchos, APL), bean goose (Anser fabalis, AFA), and whooper swan (Cygnus cygnus, CCY), and characterized the sequences by molecular cytogenetic approach. The 190-bp APL-HaeIII and 101-bp AFA-HinfI-S sequences were localized in almost all chromosomes of A. platyrhynchos and A. fabalis, respectively. However, the 192-bp AFA-HinfI-L and 290-bp CCY-ApaI sequences were distributed in almost all microchromosomes of A. fabalis and in approximately 10 microchromosomes of C. cygnus, respectively. APL-HaeIII, AFA-HinfI-L, and CCY-ApaI showed partial sequence homology with the chicken nuclear-membrane-associated (CNM) repeat families, which were localized primarily to the centromeric regions of microchromosomes in Galliformes, suggesting that ancestral sequences of the CNM repeat families are observed in the common ancestors of Anseriformes and Galliformes. These results collectively provide the possibility that homogenization of centromeric heterochromatin occurred between microchromosomes in Anseriformes and Galliformes; however, homogenization between macrochromosomes and microchromosomes also occurred in some centromeric repetitive sequences.
Collapse
|
11
|
Zlotina A, Maslova A, Kosyakova N, Al-Rikabi ABH, Liehr T, Krasikova A. Heterochromatic regions in Japanese quail chromosomes: comprehensive molecular-cytogenetic characterization and 3D mapping in interphase nucleus. Chromosome Res 2018; 27:253-270. [DOI: 10.1007/s10577-018-9597-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022]
|
12
|
Prakhongcheep O, Thapana W, Suntronpong A, Singchat W, Pattanatanang K, Phatcharakullawarawat R, Muangmai N, Peyachoknagul S, Matsubara K, Ezaz T, Srikulnath K. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata). BMC Evol Biol 2017; 17:193. [PMID: 28814266 PMCID: PMC5559828 DOI: 10.1186/s12862-017-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Satellite DNAs (stDNAs) are highly repeated sequences that constitute large portions of any genome. The evolutionary dynamics of stDNA (e.g. copy number, nucleotide sequence, location) can, therefore, provide an insight into genome organization and evolution. We investigated the evolutionary origin of VSAREP stDNA in 17 monitor lizards (seven Asian, five Australian, and five African) at molecular and cytogenetic level. RESULTS Results revealed that VSAREP is conserved in the genome of Asian and Australian varanids, but not in African varanids, suggesting that these sequences are either differentiated or lost in the African varanids. Phylogenetic and arrangement network analyses revealed the existence of at least four VSAREP subfamilies. The similarity of each sequence unit within the same VSAREP subfamily from different species was higher than those of other VSAREP subfamilies belonging to the same species. Additionally, all VSAREP subfamilies isolated from the three Australian species (Varanus rosenbergi, V. gouldii, and V. acanthurus) were co-localized near the centromeric or pericentromeric regions of the macrochromosomes, except for chromosomes 3 and 4 in each Australian varanid. However, their chromosomal arrangements were different among species. CONCLUSIONS The VSAREP stDNA family lack homogenized species-specific nucleotide positions in varanid lineage. Most VSAREP sequences were shared among varanids within the four VSAREP subfamilies. This suggests that nucleotide substitutions in each varanid species accumulated more slowly than homogenization rates in each VSAREP subfamily, resulting in non-species-specific evolution of stDNA profiles. Moreover, changes in location of VSAREP stDNA in each Australian varanid suggests a correlation with chromosomal rearrangements, leading to karyotypic differences among these species.
Collapse
Affiliation(s)
- Ornjira Prakhongcheep
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
| | - Watcharaporn Thapana
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Khampee Pattanatanang
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Real Zoo, The Sky Shopping Center, Ayutthaya, 13210, Thailand
| | | | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kazumi Matsubara
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2600, Australia
| | - Tariq Ezaz
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2600, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Animal Breeding and Genetics Consortium - Kasetsart University (ABG - KU), 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
13
|
Srikulnath K, Thapana W, Muangmai N. Role of Chromosome Changes in Crocodylus Evolution and Diversity. Genomics Inform 2015; 13:102-11. [PMID: 26865840 PMCID: PMC4742319 DOI: 10.5808/gi.2015.13.4.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/21/2023] Open
Abstract
The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles). The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42), with little interspecific variation of the chromosome arm number (fundamental number) among crocodiles (56~60). This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians) varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA) in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Watcharaporn Thapana
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
14
|
Matsubara K, Uno Y, Srikulnath K, Seki R, Nishida C, Matsuda Y. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae). Chromosoma 2015. [DOI: 10.1007/s00412-015-0529-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Ishishita S, Tsuruta Y, Uno Y, Nakamura A, Nishida C, Griffin DK, Tsudzuki M, Ono T, Matsuda Y. Chromosome size-correlated and chromosome size-uncorrelated homogenization of centromeric repetitive sequences in New World quails. Chromosome Res 2014; 22:15-34. [PMID: 24532185 DOI: 10.1007/s10577-014-9402-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many families of centromeric repetitive DNA sequences isolated from Struthioniformes, Galliformes, Falconiformes, and Passeriformes are localized primarily to microchromosomes. However, it is unclear whether chromosome size-correlated homogenization is a common characteristic of centromeric repetitive sequences in Aves. New World and Old World quails have the typical avian karyotype comprising chromosomes of two distinct sizes, and C-positive heterochromatin is distributed in centromeric regions of most autosomes and the whole W chromosome. We isolated six types of centromeric repetitive sequences from three New World quail species (Colinus virginianus, CVI; Callipepla californica, CCA; and Callipepla squamata, CSQ; Odontophoridae) and one Old World quail species (Alectoris chukar, ACH; Phasianidae), and characterized the sequences by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. The 385-bp CVI-MspI, 591-bp CCA-BamHI, 582-bp CSQ-BamHI, and 366-bp ACH-Sau3AI fragments exhibited tandem arrays of the monomer unit, and the 224-bp CVI-HaeIII and 135-bp CCA-HaeIII fragments were composed of minisatellite-like and microsatellite-like repeats, respectively. ACH-Sau3AI was a homolog of the chicken nuclear membrane repeat sequence, whose homologs are common in Phasianidae. CVI-MspI, CCA-BamHI, and CSQ-BamHI showed high homology and were specific to the Odontophoridae. CVI-MspI was localized to microchromosomes, whereas CVI-HaeIII, CCA-BamHI, and CSQ-BamHI were mapped to almost all chromosomes. CCA-HaeIII was localized to five pairs of macrochromosomes and most microchromosomes. ACH-Sau3AI was distributed in three pairs of macrochromosomes and all microchromosomes. Centromeric repetitive sequences may be homogenized in chromosome size-correlated and -uncorrelated manners in New World quails, although there may be a mechanism that causes homogenization of centromeric repetitive sequences primarily between microchromosomes, which is commonly observed in phasianid birds.
Collapse
Affiliation(s)
- Satoshi Ishishita
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chaiprasertsri N, Uno Y, Peyachoknagul S, Prakhongcheep O, Baicharoen S, Charernsuk S, Nishida C, Matsuda Y, Koga A, Srikulnath K. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota). J Hered 2014; 104:798-806. [PMID: 24129994 DOI: 10.1093/jhered/est061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two novel repetitive DNA sequences, VSAREP1 and VSAREP2, were isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) and characterized using molecular cytogenetics. The respective lengths and guanine-cytosine (GC) contents of the sequences were 190 bp and 57.5% for VSAREP1 and 185 bp and 59.7% for VSAREP2, and both elements were tandemly arrayed as satellite DNA in the genome. VSAREP1 and VSAREP2 were each located at the C-positive heterochromatin in the pericentromeric region of chromosome 2q, the centromeric region of chromosome 5, and 3 pairs of microchromosomes. This suggests that genomic compartmentalization between macro- and microchromosomes might not have occurred in the centromeric repetitive sequences of V. salvator macromaculatus. These 2 sequences did only hybridize to genomic DNA of V. salvator macromaculatus, but no signal was observed even for other squamate reptiles, including Varanus exanthematicus, which is a closely related species of V. salvator macromaculatus. These results suggest that these sequences were differentiated rapidly or were specifically amplified in the V. salvator macromaculatus genome.
Collapse
Affiliation(s)
- Nampech Chaiprasertsri
- the Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nishida C, Ishishita S, Yamada K, Griffin DK, Matsuda Y. Dynamic chromosome reorganization in the osprey ( Pandion haliaetus , Pandionidae, Falconiformes): relationship between chromosome size and the chromosomal distribution of centromeric repetitive DNA sequences. Cytogenet Genome Res 2014; 142:179-89. [PMID: 24513810 DOI: 10.1159/000358407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
The osprey (Pandion haliaetus) has a diploid number of 74 chromosomes, consisting of a large number of medium-sized macrochromosomes and relatively few microchromosomes; this differs greatly from the typical avian karyotype. Chromosome painting with chicken DNA probes revealed that the karyotype of P. haliaetus differs from the chicken karyotype by at least 14 fission events involving macrochromosomes (chicken chromosomes 1-9 and Z) and at most 15 fusions of microchromosomes, suggesting that considerable karyotype reorganization occurred in P. haliaetus in a similar manner previously reported for Accipitridae. A distinct difference was observed, however, between Accipitridae and Pandionidae with respect to the pattern of chromosome rearrangements that occurred after fissions of macrochromosomes. Metacentric or submetacentric chromosomes 1-5 in P. haliaetus appear to have been formed by centric fusion of chromosome segments derived from macrochromosomal fissions. By contrast, many pairs of bi-armed chromosomes in Accipitridae species seem to result from pericentric inversions that occurred in the fission-derived chromosomes. Two families of repetitive sequences were isolated; the 173-bp PHA-HaeIII sequence occurred on all chromosomes, whereas intense signals from the 742-bp PHA-NsiI sequence were localized to all acrocentric chromosomes, with weak signals on most of the bi-armed chromosomes. Two repetitive sequences cohybridized in the centromeric heterochromatin; however, the sequences differed in unit size, nucleotide sequence and GC content. The results suggest that the 2 sequence families originated from different ancestral sequences and were homogenized independently in centromeres, and that a chromosome size-dependent compartmentalization may have been lost in P. haliaetus.
Collapse
Affiliation(s)
- C Nishida
- Department of Natural History Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
18
|
Nishida C, Ishijima J, Ishishita S, Yamada K, Griffin DK, Yamazaki T, Matsuda Y. Karyotype reorganization with conserved genomic compartmentalization in dot-shaped microchromosomes in the Japanese mountain hawk-eagle (Nisaetus nipalensis orientalis, Accipitridae). Cytogenet Genome Res 2013; 141:284-94. [PMID: 23838459 DOI: 10.1159/000352067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
The karyotype of the Japanese mountain hawk-eagle (Nisaetus nipalensis orientalis) (2n = 66) consists of a large number of medium-sized and small chromosomes but only 4 pairs of dot-shaped microchromosomes, in contrast to the typical avian karyotype with a small number of macrochromosomes and many indistinguishable microchromosomes. To investigate the drastic karyotype reorganization in this species, we performed a molecular cytogenetic characterization employing chromosome in situ hybridization and molecular cloning of centromeric heterochromatin. Cross-species chromosome painting with chicken chromosome-specific probes 1-9 and Z and a paint pool of 20 microchromosome pairs revealed that the N. n. orientalis karyotype differs from chicken by at least 13 fissions of macrochromosomes and 15 fusions between microchromosomes and between micro- and macrochromosomes. A novel family of satellite DNA sequences (NNO-ApaI) was isolated, consisting of a GC-rich 173-bp repeated sequence element. The NNO-ApaI sequence was localized to the C-positive centromeric heterochromatin of 4 pairs of microchromosomes, which evolved concertedly by homogenization between the microchromosomes. These results suggest that the 4 pairs of dot-shaped microchromosomes have retained their genomic compartmentalization from other middle-sized and small chromosomes.
Collapse
Affiliation(s)
- C Nishida
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Cabral-de-Mello DC, de Moura RDC, de Souza Melo A, Martins C. Evolutionary dynamics of heterochromatin in the genome of Dichotomius beetles based on chromosomal analysis. Genetica 2011; 139:315-25. [PMID: 21267635 DOI: 10.1007/s10709-011-9551-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
|
20
|
Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia). Chromosome Res 2008; 16:1119-32. [DOI: 10.1007/s10577-008-1263-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/20/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
21
|
Tavares ES, Baker AJ. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 2008; 8:81. [PMID: 18328107 PMCID: PMC2279116 DOI: 10.1186/1471-2148-8-81] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background DNA barcoding of life using a standardized COI sequence was proposed as a species identification system, and as a method for detecting putative new species. Previous tests in birds showed that individuals can be correctly assigned to species in ~94% of the cases and suggested a threshold of 10× mean intraspecific difference to detect potential new species. However, these tests were criticized because they were based on a single maternally inherited gene rather than multiple nuclear genes, did not compare phylogenetically identified sister species, and thus likely overestimated the efficacy of DNA barcodes in identifying species. Results To test the efficacy of DNA barcodes we compared ~650 bp of COI in 60 sister-species pairs identified in multigene phylogenies from 10 orders of birds. In all pairs, individuals of each species were monophyletic in a neighbor-joining (NJ) tree, and each species possessed fixed mutational differences distinguishing them from their sister species. Consequently, individuals were correctly assigned to species using a statistical coalescent framework. A coalescent test of taxonomic distinctiveness based on chance occurrence of reciprocal monophyly in two lineages was verified in known sister species, and used to identify recently separated lineages that represent putative species. This approach avoids the use of a universal distance cutoff which is invalidated by variation in times to common ancestry of sister species and in rates of evolution. Conclusion Closely related sister species of birds can be identified reliably by barcodes of fixed diagnostic substitutions in COI sequences, verifying coalescent-based statistical tests of reciprocal monophyly for taxonomic distinctiveness. Contrary to recent criticisms, a single DNA barcode is a rapid way to discover monophyletic lineages within a metapopulation that might represent undiscovered cryptic species, as envisaged in the unified species concept. This identifies a smaller set of lineages that can also be tested independently for species status with multiple nuclear gene approaches and other phenotypic characters.
Collapse
Affiliation(s)
- Erika S Tavares
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Canada.
| | | |
Collapse
|
22
|
Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S. The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome 2006; 49:520-30. [PMID: 16767177 DOI: 10.1139/g05-130] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The satellite DNA (satDNA) on the ends of chromosomes has been isolated and characterized in the dioecious plant Silene latifolia. BAC clones containing large numbers of repeat units of satDNA in a tandem array were isolated to examine the clustering of the repeat units. satDNA repeat units were purified from each isolated BAC clone and sequenced. To investigate pairwise similarities among the repeat units, a phylogenetic tree was constructed using the neighbor-joining algorithm. The repeat units derived from 7 BAC clones were grouped into SacI, KpnI, #11F02, and #16E07 subfamilies. The SacI and KpnI subfamilies have been reported previously. Multicolored fluorescence in situ hybridization (FISH) using SacI or KpnI subfamily probes resulted in different signal intensities and locations at the chromosomal ends, indicating that each chromosomal end has a unique composition of subfamilies of satDNA. For example, the p arm of the X chromosome exhibited signal composition similar to that on the pseudo autosomal region (PAR) of the Y chromosome, but not to that on the q arm of the X chromosome. The satDNA has not been completely homogenized in the S. latifolia genome. Each subfamily is available for a probe of FISH karyotyping.
Collapse
Affiliation(s)
- Yusuke Kazama
- Integrated Bioscience, Graduate School of Frontier Sciences, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Kuraku S, Ishijima J, Nishida-Umehara C, Agata K, Kuratani S, Matsuda Y. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res 2006; 14:187-202. [PMID: 16544192 DOI: 10.1007/s10577-006-1035-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
Mammalian and avian genomes comprise several classes of chromosomal segments that vary dramatically in GC-content. Especially in chicken, microchromosomes exhibit a higher GC-content and a higher gene density than macrochromosomes. To understand the evolutionary history of the intra-genome GC heterogeneity in amniotes, it is necessary to examine the equivalence of this GC heterogeneity at the nucleotide level between these animals including reptiles, from which birds diverged. We isolated cDNAs for 39 protein-coding genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, and performed chromosome mapping of 31 genes. The GC-content of exonic third positions (GC3) of P. sinensis genes showed a heterogeneous distribution, and exhibited a significant positive correlation with that of chicken and human orthologs, indicating that the last common ancestor of extant amniotes had already established a GC-compartmentalized genomic structure. Furthermore, chromosome mapping in P. sinensis revealed that microchromosomes tend to contain more GC-rich genes than GC-poor genes, as in chicken. These results illustrate two modes of genome evolution in amniotes: mammals elaborated the genomic configuration in which GC-rich and GC-poor regions coexist in individual chromosomes, whereas sauropsids (reptiles and birds) refined the chromosomal size-dependent GC compartmentalization in which GC-rich genomic fractions tend to be confined to microchromosomes.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Yamada K, Nishida-Umehara C, Matsuda Y. Molecular and cytogenetic characterization of site-specific repetitive DNA sequences in the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae). Chromosome Res 2005; 13:33-46. [PMID: 15791410 DOI: 10.1007/s10577-005-2351-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 10/25/2022]
Abstract
A novel family of repetitive DNA sequences that are components of constitutive heterochromatin were cloned from BglI-digested genomic DNA of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae), and characterized by filter hybridization and chromosome in-situ hybridization. The BglI-family of repetitive sequences were classified into four types by their genome organization and chromosomal distribution as follows: the repeated sequences located on (1) two pairs of microchromosomes, (2) four pairs of microchromosomes,(3) about half the number of microchromosomes and (4) the interstitial region of the short arm of chromosome 2. The presence of microchromosome-specific repetitive sequences has also been reported in the Struthioniformes and Galliformes, suggesting that turtle chromosomes retain some similarity to the chromosome structure as well as the karyotypes of avian species.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Laboratory of Cytogenetics, Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
25
|
Yamada K, Shibusawa M, Tsudzuki M, Matsuda Y. Molecular cloning and characterization of novel centromeric repetitive DNA sequences in the blue-breasted quail (Coturnix chinensis, Galliformes). Cytogenet Genome Res 2003; 98:255-61. [PMID: 12826749 DOI: 10.1159/000071044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Accepted: 03/17/2003] [Indexed: 11/19/2022] Open
Abstract
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.
Collapse
Affiliation(s)
- K Yamada
- Laboratory of Animal Cytogenetics, Center for Advanced Science and Technology, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|