1
|
Subtype-selective contribution of muscarinic acetylcholine receptors for filial imprinting in newly-hatched domestic chicks. Behav Brain Res 2022; 424:113789. [DOI: 10.1016/j.bbr.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022]
|
2
|
Mori C, Aoki N, Fujita T, Yamaguchi S, Matsushima T, Homma KJ. Gene expression profiles of the muscarinic acetylcholine receptors in brain regions relating to filial imprinting of newly-hatched domestic chicks. Behav Brain Res 2021; 420:113708. [PMID: 34902480 DOI: 10.1016/j.bbr.2021.113708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/01/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) in the central nervous system play an important role in regulating complex functions such as learning, memory, and selective attention. Five subtypes of the mAChRs (M1-M5) have been identified in mammals, and are classified into two subfamilies: excitatory (M1, M3, and M5) and inhibitory (M2 and M4) subfamilies. Filial imprinting of domestic chicks is a useful model in the laboratory to investigate the mechanisms of memory formation in early learning. We recently found that mAChRs in the intermediate medial mesopallium (IMM) are involved in the memory formation of imprinting. However, expression profiles of each mAChR subtype in the brain regions including the IMM remain unexplored. Here we show the unique gene expression of each mAChR subtype in the pallial regions involved in imprinting. In terms of the excitatory mAChRs, M5 was expressed in the IMM region and other parts of the pallium, whereas M3 was less expressed in the IMM but highly expressed in the hyperpallium and nidopallium. Regarding the inhibitory mAChRs, M2 was sparsely distributed but clearly in some cells throughout the pallial regions. M4 was highly expressed in the IMM region and other parts of the pallium. These expression profiles can be used as a basis for understanding cholinergic modulation in the memory formation of imprinting and other learning processes in birds, and compared to those of mammals.
Collapse
Affiliation(s)
- Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido 060-0810, Japan
| | - Koichi J Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
3
|
Blockade of muscarinic acetylcholine receptor by scopolamine impairs the memory formation of filial imprinting in domestic chicks (Gallus Gallus domesticus). Behav Brain Res 2020; 379:112291. [DOI: 10.1016/j.bbr.2019.112291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 11/23/2022]
|
4
|
Kops MS, Kjaer JB, Güntürkün O, Westphal KGC, Korte-Bouws GAH, Olivier B, Bolhuis JE, Korte SM. Serotonin release in the caudal nidopallium of adult laying hens genetically selected for high and low feather pecking behavior: an in vivo microdialysis study. Behav Brain Res 2014; 268:81-7. [PMID: 24720936 DOI: 10.1016/j.bbr.2014.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/12/2023]
Abstract
Severe feather pecking (FP) is a detrimental behavior causing welfare problems in laying hens. Divergent genetic selection for FP in White Leghorns resulted in strong differences in FP incidences between lines. More recently, it was shown that the high FP (HFP) birds have increased locomotor activity as compared to hens of the low FP (LFP) line, but whether these lines differ in central serotonin (5-hydroxytryptamine, 5-HT) release is unknown. We compared baseline release levels of central 5-HT, and the metabolite 5-HIAA in the limbic and prefrontal subcomponents of the caudal nidopallium by in vivo microdialysis in adult HFP and LFP laying hens from the ninth generation of selection. A single subcutaneous d-fenfluramine injection (0.5 mg/kg) was given to release neuronal serotonin in order to investigate presynaptic storage capacity. The present study shows that HFP hens had higher baseline levels of 5-HT in the caudal nidopallium as compared to LFP laying hens. Remarkably, no differences in plasma tryptophan levels (precursor of 5-HT) between the lines were observed. d-fenfluramine increased 5-HT levels in both lines similarly indirectly suggesting that presynaptic storage capacity was the same. The present study shows that HFP hens release more 5-HT under baseline conditions in the caudal nidopallium as compared to the LFP birds. This suggests that HFP hens are characterized by a higher tonic 5-HT release.
Collapse
Affiliation(s)
- Marjolein S Kops
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Joergen B Kjaer
- Friedrich Loeffler Institut, Institute for Animal Welfare and Animal Husbandry, Celle, Germany.
| | - Onur Güntürkün
- Department of Psychology, Ruhr-University of Bochum, Bochum, Germany.
| | - Koen G C Westphal
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Gerdien A H Korte-Bouws
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Berend Olivier
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University, Wageningen, The Netherlands.
| | - S Mechiel Korte
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Nakamori T, Maekawa F, Sato K, Tanaka K, Ohki-Hamazaki H. Neural basis of imprinting behavior in chicks. Dev Growth Differ 2013; 55:198-206. [DOI: 10.1111/dgd.12028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | - Fumihiko Maekawa
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba; Ibaraki; 305-8506; Japan
| | - Katsushige Sato
- Human Frontier Science Program; Department of Health and Nutrition Sciences, Faculty of Human Health; Komazawa Women's University; Inagi; Tokyo; 206-8511; Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, School of Biomedical Science & Medical Research Institute; Tokyo Medical and Dental University; Bunkyo-ku; Tokyo; 113-8510; Japan
| | - Hiroko Ohki-Hamazaki
- Division of Biology, College of Liberal Arts and Sciences; Kitasato University; Sagamihara; Kanagawa; 252-0373; Japan
| |
Collapse
|
6
|
Abdul-Ghani S, Yanai J, Abdul-Ghani R, Pinkas A, Abdeen Z. The teratogenicity and behavioral teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-butyl Phthalate (DBP) in a chick model. Neurotoxicol Teratol 2012; 34:56-62. [DOI: 10.1016/j.ntt.2011.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 02/02/2023]
|
7
|
Wagner Z, Tábi T, Zachar G, Csillag A, Szökő É. Comparison of quantitative performance of three fluorescence labels in CE/LIF analysis of aspartate and glutamate in brain microdialysate. Electrophoresis 2011; 32:2816-22. [DOI: 10.1002/elps.201100032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Atoji Y. Immunohistochemical localization of vesicular glutamate transporter 2 (vGluT2) in the central nervous system of the pigeon (Columba livia). J Comp Neurol 2011; 519:2887-905. [DOI: 10.1002/cne.22663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Abstract
Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.
Collapse
|
10
|
Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J. Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol 2009; 32:182-6. [PMID: 19945530 DOI: 10.1016/j.ntt.2009.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/04/2009] [Accepted: 11/21/2009] [Indexed: 12/15/2022]
Abstract
Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10mg/kg of either compound on incubation day 0. On the day of hatching, imprinting behavior was impaired by both compounds. We then explored underlying mechanisms involving the targeting of protein kinase C (PKC) isoforms (alpha, beta, gamma) in the intermedial part of the hyperstriatum ventrale, the region most closely associated with imprinting. With PFOA exposure, cytosolic PKC concentrations were significantly elevated for all three isoforms; despite the overall increase in PKC expression, membrane-associated PKC was unaffected, indicating a defect in PKC translocation. In contrast, PFOS exposure evoked a significant decrease in cytosolic PKC, primarily for the beta and gamma isoforms, but again without a corresponding change in membrane-associated enzyme; this likely partial, compensatory increases in translocation to offset the net PKC deficiency. Our studies indicate that perfluorinated alkyls are indeed developmental neurotoxicants that affect posthatch cognitive performance but that the underlying synaptic mechanisms may differ substantially among the various members of this class of compounds, setting the stage for disparate outcomes later in life.
Collapse
Affiliation(s)
- Adi Pinkas
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University, Hadassah Medical School, Box 12272, 91120 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
11
|
Islam MR, Atoji Y. Distribution of vesicular glutamate transporter 2 and glutamate receptor 1 mRNA in the central nervous system of the pigeon (Columba livia). J Comp Neurol 2008; 511:658-77. [DOI: 10.1002/cne.21871] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Maekawa F, Nakamori T, Uchimura M, Fujiwara K, Yada T, Tsukahara S, Kanamatsu T, Tanaka K, Ohki-Hamazaki H. Activation of cholecystokinin neurons in the dorsal pallium of the telencephalon is indispensable for the acquisition of chick imprinting behavior. J Neurochem 2007; 102:1645-1657. [PMID: 17697050 DOI: 10.1111/j.1471-4159.2007.04733.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chick imprinting behavior is a good model for the study of learning and memory. Imprinting object is recognized and processed in the visual wulst, and the memory is stored in the intermediate medial mesopallium in the dorsal pallium of the telencephalon. We identified chicken cholecystokinin (CCK)-expressing cells localized in these area. The number of CCK mRNA-positive cells increased in chicks underwent imprinting training, and these cells expressed nuclear Fos immunoreactivity at high frequency in these regions. Most of these CCK-positive cells were glutamatergic and negative for parvalbumin immunoreactivity. Semi-quantitative PCR analysis revealed that the CCK mRNA levels were significantly increased in the trained chicks compared with untrained chicks. In contrast, the increase in CCK- and c-Fos-double-positive cells associated with the training was not observed after closure of the critical period. These results indicate that CCK cells in the dorsal pallium are activated acutely by visual training that can elicit imprinting. In addition, the CCK receptor antagonist significantly suppressed the acquisition of memory. These results suggest that the activation of CCK cells in the visual wulst as well as in the intermediate medial mesopallium by visual stimuli is indispensable for the acquisition of visual imprinting.
Collapse
Affiliation(s)
- Fumihiko Maekawa
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tomoharu Nakamori
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Motoaki Uchimura
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Ken Fujiwara
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Toshihiko Yada
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Shinji Tsukahara
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tomoyuki Kanamatsu
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hiroko Ohki-Hamazaki
- Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, JapanDepartment of Physiology, Division of Integrative Physiology, Jichi Medical University, Shimotsuke, Tochigi, JapanResearch Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, JapanDepartment of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo, JapanRecognition and Formation, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
13
|
Imprinting modulates processing of visual information in the visual wulst of chicks. BMC Neurosci 2006; 7:75. [PMID: 17101060 PMCID: PMC1657023 DOI: 10.1186/1471-2202-7-75] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 11/14/2006] [Indexed: 12/03/2022] Open
Abstract
Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.
Collapse
|
14
|
Wormser U, Izrael M, Van der Zee EA, Brodsky B, Yanai J. A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity. Neurotoxicol Teratol 2005; 27:65-71. [PMID: 15681122 DOI: 10.1016/j.ntt.2004.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
The chemical warfare blistering agent, sulfur mustard (SM), is a powerful mutagen and carcinogen. Due to its similarity to the related chemotherapy agents nitrogen mustard (mechlorethamine), it is expected to act as a developmental neurotoxicant. The present study was designed to establish a chick model for the mechanisms of SM on neurobehavioral teratogenicity, free of confounds related to mammalian maternal effects. Chicken eggs were injected with SM at a dose range of 0.0017-17.0 microg/kg of egg, which is below the threshold for dysmorphology, on incubation days (ID) 2 and 7, and then tests were conducted posthatching. Exposure to SM elicited significant deficits in the intermedial part of the hyperstriatum ventrale (IMHV)-related imprinting behavior. Parallel decreases were found in the level of membrane PKCgamma in the IMHV, while eliciting no net change in cytosolic PKCgamma. The chick, thus, provides a suitable model for the rapid evaluation of SM behavioral teratogenicity and elucidation of the mechanisms underlying behavioral anomalies. The results obtained, using a model that controls for confounding maternal effects, may be replicated in the mammalian model and provide the groundwork for studies designed to offset or reverse the SM-induced neurobehavioral defects in both avian and mammals.
Collapse
Affiliation(s)
- Uri Wormser
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
15
|
Izrael M, Van der Zee EA, Slotkin TA, Yanai J. Cholinergic synaptic signaling mechanisms underlying behavioral teratogenicity: effects of nicotine, chlorpyrifos, and heroin converge on protein kinase C translocation in the intermedial part of the hyperstriatum ventrale and on imprinting behavior in an avian model. J Neurosci Res 2005; 78:499-507. [PMID: 15470723 DOI: 10.1002/jnr.20287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A wide variety of otherwise unrelated neuroteratogens elicit a common set of behavioral defects centering around cholinergic contributions to cognitive function. We utilized the developing chick to overcome confounds related to maternal effects and compared the actions of nicotine, chlorpyrifos, and heroin on cholinergic signaling in the intermedial part of the hyperstriatum ventrale (IMHV), which controls imprinting behavior. Chicken eggs were injected with nicotine (10 mg/kg of egg), chlorpyrifos (10 mg/kg of egg), or heroin (20 mg/kg of egg; all doses below the threshold for dysmorphology) on incubation days (ID) 0 and 5, and then tests were conducted posthatching. All three compounds elicited significant deficits in imprinting behavior. We also found defects in cholinergic synaptic signaling specifically involving the muscarinic receptor-mediated membrane translocation of protein kinase C (PKC)-gamma and in the basal levels of both PKCgamma and PKCbetaII, the two isoforms known to be relevant to behavioral performance. In contrast, there were no alterations in the response of PKCalpha, an isoform that does not contribute to the behavior, nor were cytosolic levels of any of the isoforms affected. Taken together with similar results obtained in rodents, our findings suggest that disparate neuroteratogens all involve signaling defects centering on the ability of cholinergic receptors to elicit PKCgamma translocation/activation and that this effect is direct, i.e., not mediated by maternal confounds. The chick thus provides a suitable model for the rapid screening of neuroteratogens and elucidation of the mechanisms underlying behavioral anomalies.
Collapse
Affiliation(s)
- Michal Izrael
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
16
|
Meredith RM, McCabe BJ, Kendrick KM, Horn G. Amino acid neurotransmitter release and learning: a study of visual imprinting. Neuroscience 2004; 126:249-56. [PMID: 15207342 DOI: 10.1016/j.neuroscience.2004.03.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2004] [Indexed: 11/30/2022]
Abstract
The intermediate and medial part of the hyperstriatum ventrale (IMHV) is an area of the domestic chick forebrain that stores information acquired through the learning process of imprinting. The effects of visual imprinting on the release of the amino acids aspartate, arginine, citrulline, gamma-aminobutyric acid (GABA), glutamate, glycine and taurine from the left and right IMHVs in vitro were measured at 3.5, 10 and 24 h after training. Chicks were exposed to an imprinting stimulus for 1 h, their preferences measured 10 min afterward and a preference score calculated as a measure of the strength of learning. Potassium stimulation was used to evoke amino acid release from the IMHVs of trained and untrained chicks in the presence and absence of extracellular Ca2+. Ca2+-dependent, K+-evoked release of glutamate was significantly (34.4%) higher in trained than in untrained chicks. This effect was not influenced by time after training or by side (left or right IMHV). Training influenced the evoked release of GABA and taurine from the left IMHV at both 3.5 and 10 h. The training effects at the two times were statistically homogeneous so data (< or = 10 h group) were combined for each amino acid respectively. For this < or = 10 h group, evoked release increased significantly with preference score. In contrast, for the 24 h group, evoked release of GABA and taurine was not significantly correlated with preference score. There were no significant correlations between preference score and GABA or taurine release in the right IMHV at any time, nor in the absence of extracellular calcium. No significant effects of training condition, time or side were observed for any other amino acid in the study. The present findings suggest that soon after chicks have been exposed to an imprinting stimulus glutamatergic excitatory transmission in IMHV is enhanced, and remains enhanced for at least 24 h. In contrast, the learning-related elevations in taurine and GABA release are not sustained over this period. The change in GABA release may reflect a transient increase in inhibitory transmission in the left IMHV.
Collapse
Affiliation(s)
- R M Meredith
- Sub-Department of Animal Behaviour, Department of Zoology, University of Cambridge, Madingley, Cambridge CB3 8AA, UK.
| | | | | | | |
Collapse
|
17
|
Baldauf K, Braun K, Gruss M. Opiate modulation of monoamines in the chick forebrain: Possible role in emotional regulation? ACTA ACUST UNITED AC 2004; 62:149-63. [PMID: 15452850 DOI: 10.1002/neu.20076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous studies have shown that the opiate system is crucially involved in emotionally guided behavior. In the present study, we focussed on the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of the chick forebrain. This avian prefrontal cortex analogue is critically involved in auditory filial imprinting, a well-characterized juvenile emotional learning event. The high density of mu-opiate receptors expressed in the MNH led to the hypothesis that mu-opiate receptor-mediated processes may modulate the glutamatergic, dopaminergic, and/or serotonergic neurotransmission within the MNH and thereby have a critical impact on filial imprinting. Using microdialysis and pharmaco-behavioral approaches in young chicks, we demonstrated that: the systemic application of the mu-opiate receptor antagonist naloxone (5, 50 mg/kg) significantly increased extracellular levels of 5-HIAA and HVA; the systemic application of the specific mu-opiate receptor agonist DAGO (5 mg/kg) increased the levels of HVA and taurine, an effect that was antagonized by simultaneously applied naloxone (5 mg/kg); the local application of DAGO (1 mM) had no effects on 5-HIAA, HVA, glutamate, and taurine, however, the effects of systemically injected naloxone (5 mg/kg) were abolished by simultaneously applied DAGO (1 mM); the systemic application of naloxone (5 mg/kg) increased distress behavior (measured as the duration of distress vocalization during separation from the peer group). These results are in line with our hypothesis that the mu-opiate receptor-mediated modulation of serotonergic and dopaminergic neurotransmission alters the emotional and motivational status of the animal and thereby may play a modulatory role during filial imprinting in the newborn animal.
Collapse
Affiliation(s)
- K Baldauf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | | | | |
Collapse
|
18
|
Salinska E, Stafiej A. Metabotropic glutamate receptors (mGluRs) are involved in early phase of memory formation: possible role of modulation of glutamate release. Neurochem Int 2003; 43:469-74. [PMID: 12742093 DOI: 10.1016/s0197-0186(03)00036-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) groups I and II are involved in the cellular processes of long-term potentiation (LTP) and learning and memory formation. I.c.v. injection of the mGluRs agonist 1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) can impair memory formation in some types of learning task. The role of mGluRs in neurotransmitters release and production of second messengers has been suggested. The aim of the present study was to determine the effect of i.c.v. administration of the new potent mGluRs agonist ABHxD-I and compare its effect with that of ACPD. We studied the effect of both agonists on acquisition and memory for a one-trial passive avoidance learning task in day-old chicks and on the training related glutamate (Glu) release. ACPD or ABHxD-I (50 nmole per chick, i.c.v. injection) were administered at different times before or after training and chicks were tested at various times after training. Chicks injected with ABHxD-I 30 min before training showed amnesia when tested 30 min or 3h after training. The amnestic effect of ACPD was significant only 30 min after training. Glu release evoked by 70 mM KCl was measured in slices prepared from the IMHV of chick brain isolated from animals injected with either ACPD or ABHxD-I 30 min before training and tested 30 min after training. Glu concentration was measured using HPLC. Both ACPD and ABHxD-I significantly increased Glu release in slices isolated from untrained chicks (30 and 48% compare to control, respectively, P<0.05). Training itself increased Glu release (41% compared to control, P<0.01) and no additional effect of either ACPD or ABHxD-I was observed. These results suggest that mGluRs groups I and II are involved in the early stages of memory formation and that application of either of the studied mGluRs agonists may interfere with that process. The amnestic effect of ABHxD-I seems to be stronger and longer lasting. Although the mechanism of this effect still remains unclear, our results suggest that disregulation of Glu release by mGluR agonists may participate in this process.
Collapse
Affiliation(s)
- Elzbieta Salinska
- Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | | |
Collapse
|
19
|
Hertz L, Hansson E, Rönnbäck L. Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 2001; 39:227-52. [PMID: 11434981 DOI: 10.1016/s0197-0186(01)00017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Holger Hydén demonstrated almost 40 years ago that learning changes the base composition of nuclear RNA, i.e. induces an alteration in gene expression. An equally revolutionary observation at that time was that a base change occurred in both neurons and glia. From these findings, Holger Hydén concluded that establishment of memory is correlated with protein synthesis, and he demonstrated de novo synthesis of several high-molecular protein species after learning. Moreover, the protein, S-100, which is mainly found in glial cells, was increased during learning, and antibodies towards this protein inhibited memory consolidation. S-100 belongs to a family of Ca(2+)-binding proteins, and Holger Hydén at an early point realized the huge importance of Ca(2+) in brain function. He established that glial cells show more marked and earlier changes in RNA composition in Parkinson's disease than neurons. Holger Hydén also had the vision and courage to suggest that "mental diseases could as well be thought to depend upon a disturbance of processes in glia cells as in the nerve cells", and he showed that antidepressant drugs cause profound changes in glial RNA. The importance of Holger Hydén's findings and visions can only now be fully appreciated. His visionary concepts of the involvement of glia in neurological and mental illness, of learning being associated with changes in gene expression, and of the functional importance of Ca(2+)-binding proteins and Ca(2+) are presently being confirmed and expanded by others. This review briefly summarizes highlights of Holger Hydén's work in these areas, followed by a discussion of recent research, confirming his findings and expanding his visions. This includes strong evidence that glial dysfunction is involved in the development of Parkinson's disease, that drugs effective in mood disorders alter gene expression and exert profound effects on astrocytes, and that neuronal-astrocytic interactions in glutamate signaling, NO synthesis, Ca(2+) signaling, beta-adrenergic activity, second messenger production, protein kinase activities, and transcription factor phosphorylation control the highly programmed events that carry the memory trace through the initial, signal-mediated short-term and intermediate memory stages to protein synthesis-dependent long-term memory.
Collapse
Affiliation(s)
- L Hertz
- Hong Kong DNA Chips Ltd., Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|