1
|
Pereira AL, Malcher SM, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Mendes-Oliveira AC, Pieczarka JC. Extensive Chromosomal Reorganization in the Evolution of New World Muroid Rodents (Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits. PLoS One 2016; 11:e0146179. [PMID: 26800516 PMCID: PMC4723050 DOI: 10.1371/journal.pone.0146179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/13/2015] [Indexed: 12/05/2022] Open
Abstract
Sigmodontinae rodents show great diversity and complexity in morphology and ecology. This diversity is accompanied by extensive chromosome variation challenging attempts to reconstruct their ancestral genome. The species Hylaeamys megacephalus–HME (Oryzomyini, 2n = 54), Necromys lasiurus—NLA (Akodontini, 2n = 34) and Akodon sp.–ASP (Akodontini, 2n = 10) have extreme diploid numbers that make it difficult to understand the rearrangements that are responsible for such differences. In this study we analyzed these changes using whole chromosome probes of HME in cross-species painting of NLA and ASP to construct chromosome homology maps that reveal the rearrangements between species. We include data from the literature for other Sigmodontinae previously studied with probes from HME and Mus musculus (MMU) probes. We also use the HME probes on MMU chromosomes for the comparative analysis of NLA with other species already mapped by MMU probes. Our results show that NLA and ASP have highly rearranged karyotypes when compared to HME. Eleven HME syntenic blocks are shared among the species studied here. Four syntenies may be ancestral to Akodontini (HME2/18, 3/25, 18/25 and 4/11/16) and eight to Sigmodontinae (HME26, 1/12, 6/21, 7/9, 5/17, 11/16, 20/13 and 19/14/19). Using MMU data we identified six associations shared among rodents from seven subfamilies, where MMU3/18 and MMU8/13 are phylogenetic signatures of Sigmodontinae. We suggest that the associations MMU2entire, MMU6proximal/12entire, MMU3/18, MMU8/13, MMU1/17, MMU10/17, MMU12/17, MMU5/16, MMU5/6 and MMU7/19 are part of the ancestral Sigmodontinae genome.
Collapse
Affiliation(s)
- Adenilson Leão Pereira
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil
- CNPq Researcher, Brasília, Brasil
| | - Patricia Caroline Mary O’Brien
- Cambridge Resource Center for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Center for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil
- CNPq Researcher, Brasília, Brasil
- * E-mail:
| |
Collapse
|
2
|
Chaves R, Louzada S, Meles S, Wienberg J, Adega F. Praomys tullbergi (Muridae, Rodentia) genome architecture decoded by comparative chromosome painting with Mus and Rattus. Chromosome Res 2012; 20:673-83. [PMID: 22847644 DOI: 10.1007/s10577-012-9304-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/25/2022]
Abstract
The order Rodentia and in particular the Muridae are characterised by extremely high rates of chromosome evolution and remarkable chromosome diversity. The Praomys group (Murinae, Muridae and Rodentia) constitutes a diverse and abundant group divided into two complexes, the jacksoni complex and the tullbergi complex which includes the species Praomys tullbergi. Comparative chromosome painting using the two index genomes, Mus musculus and Rattus norvegicus, was performed resulting in a high resolution chromosome map for P. tullbergi. The combined use of rat and mouse probes and the assistance of the assembly of all the available sequencing data from Ensembl genome browser allowed a great dissection of P. tullbergi genome, the detection of inversion events and ultimately the refinement of P. tullbergi comparative map. A key achievement was the reconstruction of a high precision Muroidea ancestral karyotype (Muridae/Cricetidae and Murine) based in a broad species analysis combining previous reported comparative maps together with the presented data. This permitted the reconstruction of the evolutionary history of chromosome changes since the ancestral Muroidea genome and enlightened the phylogenetic relationships with the related species mouse and rat. The analysis of constitutive heterochromatin and its co-localisation with the identified evolutionary breakpoints regions was performed suggesting the involvement of repetitive sequences in the chromosome rearrangements that originated the present P. tullbergi genome architecture.
Collapse
Affiliation(s)
- Raquel Chaves
- Centre of Genomics and Biotechnology, Institute for Biotechnology and Bioengineering, University of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD), Vila Real, Portugal.
| | | | | | | | | |
Collapse
|
3
|
Badenhorst D, Dobigny G, Robinson TJ. Karyotypic evolution of hapalomys inferred from chromosome painting: a detailed characterization contributing new insights into the ancestral murinae karyotype. Cytogenet Genome Res 2012; 136:83-8. [PMID: 22222239 DOI: 10.1159/000335286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
We report on the construction of a comparative chromosome map between the emblematic laboratory rat, Rattus norvegicus (RNO), and Delacour's Marmoset rat, Hapalomys delacouri (HDE), based on cross-species fluorescence in situ hybridization with R. norvegicus painting probes. Sixteen R. norvegicus chromosomes (RNO 3-6, 8, 10-15, 17-20, and X) were retained in their entirety (as a conserved block or as a single chromosome) in the H. delacouri genome. The remaining 5 R. norvegicus chromosomes (RNO 1, 2, 7, 9, and 16) produced 2 signals in the H. delacouri karyotype. Our analysis allowed the detection of an X-autosome translocation between RNO X and 11 that occurred convergently in an unrelated species, Bandicota savilei, and a single B chromosome that accounts for the 2n = 48 karyotype observed in this specimen. In total, the rat chromosome paints revealed 27 segments of conserved synteny in H. delacouri. The analysis showed 7 NOR bearing pairs in H. delacouri (HDE 1, 3, 6, 7, 8, 10, and 13) and the occurrence of an interstitial telomeric signal at the centromeric regions of 8 H. delacouri chromosomes (HDE 3, 10, 11, 12, 13, 16, 19, and 22). These data, together with published comparative maps, enabled a revision of the previously postulated murine ancestral condition suggesting that it probably comprised a wholly acrocentric karyotype with 2n = 46-50.
Collapse
Affiliation(s)
- D Badenhorst
- Evolutionary Genomics Group, University of Stellenbosch, Botany and Zoology Department, Stellenbosch, South Africa
| | | | | |
Collapse
|
4
|
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS. Chromosomal evolution in Rodentia. Heredity (Edinb) 2012; 108:4-16. [PMID: 22086076 PMCID: PMC3238120 DOI: 10.1038/hdy.2011.110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/08/2022] Open
Abstract
Rodentia is the most species-rich mammalian order and includes several important laboratory model species. The amount of new information on karyotypic and phylogenetic relations within and among rodent taxa is rapidly increasing, but a synthesis of these data is currently lacking. Here, we have integrated information drawn from conventional banding studies, recent comparative painting investigations and molecular phylogenetic reconstructions of different rodent taxa. This permitted a revision of several ancestral karyotypic reconstructions, and a more accurate depiction of rodent chromosomal evolution.
Collapse
Affiliation(s)
- S A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
5
|
Castiglia R, Solano E, Makundi RH, Hulselmans J, Verheyen E, Colangelo P. Rapid chromosomal evolution in the mesic four‐striped grass rat
Rhabdomys dilectus
(Rodentia, Muridae) revealed by mtDNA phylogeographic analysis. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2011.00627.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy
| | - Emanuela Solano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy
| | - Rhodes H. Makundi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jan Hulselmans
- University of Antwerp, Evolutionary Ecology Group, Antwerp, Belgium
| | | | - Paolo Colangelo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy
| |
Collapse
|
6
|
Hass I, Müller S, Artoni RF, Sbalqueiro IJ. Comparative chromosome maps of neotropical rodents Necromys lasiurus and Thaptomys nigrita (Cricetidae) established by ZOO-FISH. Cytogenet Genome Res 2011; 135:42-50. [PMID: 21846965 DOI: 10.1159/000330259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2011] [Indexed: 11/19/2022] Open
Abstract
This work presents chromosome homology maps between Mus musculus (MMU) and 2 South American rodent species from the Cricetidae group: Necromys lasiurus (NLA, 2n = 34) and Thaptomys nigrita (TNI, 2n = 52), established by ZOO-FISH using mouse chromosome-specific painting probes. Extending previous molecular cytogenetic studies in Neotropical rodents, the purpose of this work was to delineate evolutionary chromosomal rearrangements in Cricetidae rodents and to reconstruct the phylogenetic relationships among the Akodontini species. Our phylogenetic reconstruction by maximum parsimony analysis of chromosomal characters confirmed one consistent clade of all Neotropical rodents studied so far. In both species analyzed here, we observed the syntenic association of chromosome segments homologous to MMU 8/13, suggesting that this chromosome form is a synapomorphic trait exclusive to Neotropical rodents. Further, the previously described Akodontini-specific syntenic associations MMU 3/18 and MMU 6/12 were observed in N.lasiurus but not in T. nigrita, although the latter species is considered a member of the Akodontini tribe by some authors. Finally, and in agreement with this finding, N.lasiurus and Akodon serrensis share the derived fission of MMU 13, which places them as basal sister clades within Akodontini.
Collapse
Affiliation(s)
- I Hass
- Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brasil
| | | | | | | |
Collapse
|
7
|
Sannier J, Gerbault-Seureau M, Dutrillaux B, Richard F. Conserved although Very Different Karyotypes in Gliridae and Sciuridae and Their Contribution to Chromosomal Signatures in Glires. Cytogenet Genome Res 2011; 134:51-63. [DOI: 10.1159/000324691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 01/08/2023] Open
|
8
|
Chromosomal phylogeny of four Akodontini species (Rodentia, Cricetidae) from southern Brazil established by Zoo-FISH using Mus musculus (Muridae) painting probes. Chromosome Res 2008; 16:75-88. [PMID: 18293106 DOI: 10.1007/s10577-007-1211-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We established chromosome homology maps between Mus musculus (MMU) and five species of the Akodontini tribe, Akodon cursor (2n = 14, 15 and 16), A. montensis (2n = 24), A. paranaensis (2n = 44), A. serrensis (2n = 46) and Oligoryzomys flavescens (2n = 66) by Zoo-FISH (fluorescence in situ hybridization) using mouse chromosome-specific probes. The aims of this study were (1) to detect the chromosomal rearrangements responsible for the karyotype variation in this tribe and (2) to reconstruct the phylogenetic relationships among these species. We observed four common syntenic associations of homologous chromosome segments, of which the MMU 7/19 has been described previously in other rodents from Africa, Asia and Europe, and might represent a phylogenetic link between the Old World and Neotropical rodents. The remaining three associations (3/18, 6/12 and 8/13) have been observed exclusively in Neotropical rodents so far, which at present can be considered synapomorphic traits of this group. Five further mouse chromosomes (MMU 4, 9, 14, 18 and 19) were each found evolutionarily conserved as a separate syntenic unit. Our phylogenetic analysis using parsimony and heuristic search detected one consistent group, separating the Akodontini from other rodents.
Collapse
|
9
|
Nakamura T, Matsubara K, Yasuda SP, Tsuchiya K, Matsuda Y. Chromosome homology between mouse and three Muridae species, Millardia meltada, Acomys dimidiatus and Micromys minutus, and conserved chromosome segments in murid karyotypes. Chromosome Res 2007; 15:1023-32. [PMID: 18095177 DOI: 10.1007/s10577-007-1177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 11/29/2022]
Abstract
Comparative chromosome painting with mouse (Mus musculus, MMU) chromosome-specific DNA probes was performed for three Muridae species, the Indian soft-furred field rat (Millardia meltada), the spiny mouse (Acomys dimidiatus) and the harvest mouse (Micromys minutus). All probes except for the Y probe were successfully hybridized to the chromosomes of all species, and homologous chromosome segments between mouse and the three species were identified at the molecular level. Comparison of our data with the published data of six other genera (Mus, Rattus, Apodemus, Otomys, Rhabdomys and Cricetulus) of the Muridae suggested that the associations MMU1b/17a, 2b/13a, 5b/11a, 7/19, 10b/17b, 10c/17c, 11b/16a, 12/17d and 13b/15, and the single painted chromosomes and chromosome segments MMU3, 4, 5a, 8a, 8b, 16b, 18 and X were probably contained by the ancestral karyotype of the Muridae, and have been strongly conserved throughout murid evolution.
Collapse
Affiliation(s)
- Taro Nakamura
- Laboratory of Animal Cytogenetics, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
10
|
Nakamura T, Kuroiwa A, Nishida-Umehara C, Matsubara K, Yamada F, Matsuda Y. Comparative chromosome painting map between two Ryukyu spiny rat species, Tokudaia osimensis and Tokudaia tokunoshimensis (Muridae, Rodentia). Chromosome Res 2007; 15:799-806. [PMID: 17874214 DOI: 10.1007/s10577-007-1163-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 11/24/2022]
Abstract
Ryukyu spiny rats (genus Tokudaia) are indigenous species that are confined to three islands of the Nansei Shoto archipelago, Amami-Oshima, Tokunoshima and Okinawa-jima, Japan. Tokudaia tokunoshimensis from Tokunoshima Island and Tokudaia osimensis from Amami-Oshima Island are closely related taxonomically, although their karyotypes are quite different: the diploid chromosome numbers and sex chromosome constitution are 2n=45, X0/X0 for T. tokunoshimensis and 2n=25, X0/X0 for T. osimensis. We conducted comparative chromosome painting with chromosome-specific DNA probes of the laboratory mouse (Mus musculus) to molecularly examine the chromosome homology between T. tokunoshimensis and T. osimensis, and deduced a possible ancestral karyotype of Tokudaia species and the process of evolutionary chromosome rearrangements. The proposed ancestral karyotype with the diploid number of 2n=48, XX/XY was similar to the karyotype of T. tokunoshimensis, and the karyotype of T. osimensis would then have been established through at least 14 chromosomal changes, mainly centric fusion and tandem fusion, from the ancestral karyotype. The close karyological relationship between the ancestral karyotypes of Tokudaia and Apodemus also suggests that the chromosomal evolution in the Tokudaia-Apodemus lineage has been very slow and has accelerated only recently in the branch leading to T. osimensis.
Collapse
Affiliation(s)
- Taro Nakamura
- Laboratory of Animal Cytogenetics, Graduate School of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Veyrunes F, Dobigny G, Yang F, O'Brien PCM, Catalan J, Robinson TJ, Britton-Davidian J. Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc Biol Sci 2007; 273:2925-34. [PMID: 17015352 PMCID: PMC1639516 DOI: 10.1098/rspb.2006.3670] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The house mouse (Mus musculus) is universally adopted as the mammalian laboratory model, and it is involved in most studies of large-scale comparative genomics. Paradoxically, this taxon is rarely the index species for evolutionary analyses of genome architecture owing to its highly rearranged karyotype. To unravel the origin and nature of this extensive repatterning genome, we performed a multidirectional chromosome painting study of representative species within the genus Mus. However, the latter includes four extant subgenera (Mus, Coelomys, Nannomys and Pyromys) between which the phylogenetic relationships remain elusive despite the numerous molecular studies. Comparative genomic maps were established using chromosome-specific painting probes of the laboratory mouse and Nannomys minutoides. Hence, by integrating closely related species within Mus, this study allowed us to: (i) unambiguously resolve for the first time the long-standing controversial phylogeny, (ii) trace the evolution of genome organization in the house mouse, (iii) track rearrangements that necessitated new centromere locations, i.e. formation of neocentromere or reactivation of latent centromeres, (iv) reveal an extremely high rate of karyotypic evolution, with a 10- to 30-fold acceleration which was coincidental with subgeneric cladogenesis and (v) highlight genomic areas of interest for high-resolution studies on neocentromere formation and synteny breakpoints.
Collapse
Affiliation(s)
- Frederic Veyrunes
- Institut des Sciences de l'Evolution UMR5554, Génétique & Environnement, Université Montpellier II, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sitnikova NA, Romanenko SA, O'Brien PCM, Perelman PL, Fu B, Rubtsova NV, Serdukova NA, Golenishchev FN, Trifonov VA, Ferguson-Smith MA, Yang F, Graphodatsky AS. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res 2007; 15:447-56. [PMID: 17497247 DOI: 10.1007/s10577-007-1137-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.
Collapse
|
13
|
Romanenko SA, Volobouev VT, Perelman PL, Lebedev VS, Serdukova NA, Trifonov VA, Biltueva LS, Nie W, O'Brien PCM, Bulatova NS, Ferguson-Smith MA, Yang F, Graphodatsky AS. Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 2007; 15:283-97. [PMID: 17333534 DOI: 10.1007/s10577-007-1124-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 11/30/2022]
Abstract
The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.
Collapse
|
14
|
Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, Wang J, Li T, Nie W, O'Brien PCM, Volobouev VT, Stanyon R, Ferguson-Smith MA, Yang F, Graphodatsky AS. Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 2006; 17:1183-92. [PMID: 17143584 DOI: 10.1007/s00335-006-0081-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
The laboratory mouse (Mus musculus, 2n = 40), the Chinese hamster (Cricetulus griseus, 2n = 22), and the golden (Syrian) hamster (Mesocricetus auratus, 2n = 44) are common laboratory animals, extensively used in biomedical research. In contrast with the mouse genome, which was sequenced and well characterized, the hamster species has been set aside. We constructed a chromosome paint set for the golden hamster, which for the first time allowed us to perform multidirectional chromosome painting between the golden hamster and the mouse and between the two species of hamster. From these data we constructed a detailed comparative chromosome map of the laboratory mouse and the two hamster species. The golden hamster painting probes revealed 25 autosomal segments in the Chinese hamster and 43 in the mouse. Using the Chinese hamster probes, 23 conserved segments were found in the golden hamster karyotype. The mouse probes revealed 42 conserved autosomal segments in the golden hamster karyotype. The two largest chromosomes of the Chinese hamster (1 and 2) are homologous to seven and five chromosomes of the golden hamster, respectively. The golden hamster karyotype can be transformed into the Chinese hamster karyotype by 15 fusions and 3 fissions. Previous reconstructions of the ancestral murid karyotype proposed diploid numbers from 2n = 52 to 2n = 54. By integrating the new multidirectional chromosome painting data presented here with previous comparative genomics data, we can propose that syntenies to mouse Chrs 6 and 16 were both present and to hypothesize a diploid number of 2n = 48 for the ancestral Murinae/Cricetinae karyotype.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Engelbrecht A, Dobigny G, Robinson TJ. Further insights into the ancestral murine karyotype: the contribution of the Otomys-Mus comparison using chromosome painting. Cytogenet Genome Res 2006; 112:126-30. [PMID: 16276101 DOI: 10.1159/000087524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/28/2005] [Indexed: 11/19/2022] Open
Abstract
The African vlei rat, Otomys irroratus, comprises several distinct chromosomal races that may be grouped into two major cytogenetic clades. Recognition of these clades is underpinned by a complex chromosomal rearrangement involving three different autosomes in the unfused state. We have used unidirectional fluorescence in situ hybridization (FISH) of mouse chromosome-specific painting probes to molecularly define the components of this rearrangement as well as to establish the chromosomal homologies between the mouse and the vlei rat genomes. This has allowed for the detection of 41 autosomal segments of conserved synteny. Nine mouse chromosomes were conserved in toto (MMU3, 4, 6, 7, 11, 12, 14, 18, 19) with a further seven (MMU2, 5, 8, 9, 10, 13, 16) showing homology to two discrete regions in the vlei rat genome. Two mouse autosomes (MMU15, 17) correspond to three regions in O. irroratus with MMU1 being the most fragmented showing five sites of hybridization in this species. By mapping these data to published sequence-based phylogenies we are able to confirm most of the published putative ancestral murine chromosomal states. Our data further indicate that MMU15a+ MMU13b+MMU10b+MMU17b was present in the murine ancestral karyotype suggesting an ancestral 2n = 52 rather than the 2n = 54 previously postulated.
Collapse
Affiliation(s)
- A Engelbrecht
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | | | | |
Collapse
|
16
|
Stanyon R, Yang F, Morescalchi AM, Galleni L. Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 2004; 105:406-11. [PMID: 15237228 DOI: 10.1159/000078213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 11/20/2003] [Indexed: 11/19/2022] Open
Abstract
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis.
Collapse
Affiliation(s)
- R Stanyon
- Comparative Molecular Cytogenetics, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | |
Collapse
|