1
|
Zhang W, Chang X, Wu Z, Dou J, Yin Y, Sun C, Wu W. Rapid isolation of non-aflatoxigenic Aspergillus flavus strains. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, a method for screening non-aflatoxigenic Aspergillus flavus in soil samples collected from major peanut-growing regions of China was developed. The single colonies were picked and cultured on Aspergillus flavus and parasiticus agar (AFPA). If the reverse side of the colony on AFPA was orange-coloured, it was considered A. flavus or Aspergillus parasiticus. After the genomic DNA of each strain was extracted, 28S rRNA and calmodulin were amplified and sequenced to determine the species. The key gene, aflR, was amplified and digested via polymerase chain reaction-restriction fragment length polymorphism. The aflatoxigenic A. flavus and the non-aflatoxigenic A. flavus and A. parasiticus were distinguished by enzyme digestion of aflR. 156 strains of A. flavus were screened, which consisted of 135 aflatoxigenic and 21 non-aflatoxigenic strains. The aflatoxin producing ability of each strain was confirmed using solid-state fermentation experiments. Using the method developed in the present study, we confirmed that the non-aflatoxigenic A. flavus strains isolated lost their capacity to produce aflatoxins. Considering there could be some alterations in other functional genes, some non-aflatoxigenic strains could be identified inaccurately as aflatoxigenic strains, although that did not occur in the present study. The growth of non-aflatoxigenic A. flavus was observed, and the most rapidly growing non-aflatoxigenic strain was selected for plate confrontation assays and toxic mixed culture experiments. The inhibition rate of non-aflatoxigenic A. flavus against aflatoxigenic A. flavus was 55.4 and 72.6% in potato dextrose agar (PDA) plate and natural soybean medium, respectively. The screened non-aflatoxigenic A. flavus strains provide a microbial resource for biological control of aflatoxin contamination.
Collapse
Affiliation(s)
- W. Zhang
- Department of Biological and Agricultural Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, China P.R
- Academy of National Food and Strategic Reserves Administration P.R.C, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China P.R
| | - X. Chang
- Academy of National Food and Strategic Reserves Administration P.R.C, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China P.R
| | - Z. Wu
- Department of Biological and Agricultural Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, China P.R
| | - J. Dou
- Department of Biological and Agricultural Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, China P.R
| | - Y. Yin
- Academy of National Food and Strategic Reserves Administration P.R.C, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China P.R
| | - C. Sun
- Academy of National Food and Strategic Reserves Administration P.R.C, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China P.R
| | - W. Wu
- Department of Biological and Agricultural Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, China P.R
| |
Collapse
|
2
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
3
|
Baquião AC, Rodriges AG, Lopes EL, Tralamazza SM, Zorzete P, Correa B. Expression of Genes by Aflatoxigenic and Nonaflatoxigenic Strains of Aspergillus flavus Isolated from Brazil Nuts. Foodborne Pathog Dis 2016; 13:434-40. [PMID: 27224419 DOI: 10.1089/fpd.2015.2111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of the present study were to monitor the production of aflatoxin B1 (AFB1) and mycelial growth, and to evaluate the expression of genes directly and indirectly involved in the biosynthesis of aflatoxins by Aspergillus flavus isolated from Brazil nuts. Six previously identified A. flavus strains were grown on coconut agar at 25°C for up to 10 days. Mycotoxins were separated by high-performance liquid chromatography and fungal growth was measured daily using the diametric mycelial growth rate. Transcriptional analysis was performed by real-time polymerase chain reaction (PCR) after 2 and 7 d of incubation using specific primers (aflR, aflD, aflP, lipase, metalloprotease, and LaeA). Three (50%) of the six A. flavus isolates produced AFB1 (ICB-1, ICB-12, and ICB-54) and three (50%) were not aflatoxigenic (ICB-141, ICB-161, and ICB-198). Aflatoxin production was observed from d 2 of incubation (1.5 ng/g for ICB-54) and increased gradually with time of incubation until d 10 (15,803.6 ng/g for ICB-54). Almost all A. flavus isolates exhibited a similar gene expression pattern after 2 d of incubation (p > 0.10). After 7 d of incubation, the LaeA (p < 0.05) and metalloprotease (p < 0.05) genes were the most expressed by nonaflatoxigenic strains, whereas aflatoxigenic isolates exhibited higher expression of the aflR (p < 0.05) and aflD genes (p < 0.05). Our results suggest that the expression of aflR and aflD is correlated with aflatoxin production in A. flavus and that overexpression of aflR could affect the transcriptional and aflatoxigenic pattern (ICB-54). Elucidation of the molecular mechanisms that regulate the secondary metabolism of toxigenic fungi may permit the rational silencing of the genes involved and consequently the programmed inhibition of aflatoxin production. Knowledge of the conditions, under which aflatoxin genes are expressed, should contribute to the development of innovative and more cost-effective strategies to reduce and prevent aflatoxin contamination in Brazil nuts.
Collapse
Affiliation(s)
- Arianne Costa Baquião
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo, Brazil
| | - Aline Guedes Rodriges
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo, Brazil
| | - Evandro Luiz Lopes
- 2 Escola Paulista de Política, Economia e Negócios, Universidade Federal de São Paulo , São Paulo, Brazil
| | - Sabina Moser Tralamazza
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo, Brazil
| | - Patricia Zorzete
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo, Brazil
| | - Benedito Correa
- 1 Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo, Brazil
| |
Collapse
|
4
|
Yu J. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins (Basel) 2012; 4:1024-57. [PMID: 23202305 PMCID: PMC3509697 DOI: 10.3390/toxins4111024] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/20/2023] Open
Abstract
Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.
Collapse
Affiliation(s)
- Jiujiang Yu
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA/ARS), New Orleans, LA 70112, USA.
| |
Collapse
|
5
|
Peña-Montes C, Lange S, Castro-Ochoa D, Ruiz-Noria K, Cruz-García F, Schmid R, Navarro-Ocaña A, Farrés A. Differences in biocatalytic behavior between two variants of StcI esterase from Aspergillus nidulans and its potential use in biocatalysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Peña-Montes C, Lange S, Flores I, Castro-Ochoa D, Schmid R, Cruz-García F, Farrés A. Molecular characterization of StcI esterase from Aspergillus nidulans. Appl Microbiol Biotechnol 2009; 84:917-26. [PMID: 19440704 DOI: 10.1007/s00253-009-2005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/01/2009] [Accepted: 04/07/2009] [Indexed: 11/24/2022]
Abstract
Aspergillus nidulans produces StcI esterase, which is involved in the biosynthesis of sterigmatocystin, a precursor of aflatoxins. Previous reports of this esterase in A. nidulans suggest that it is composed of 286 amino acid residues with a theoretical molecular mass of 31 kDa. Various conditions were evaluated to determine the optimal expression conditions for StcI; the highest level was observed when A. nidulans was cultured in solid oat media. Various esterases were expressed differentially according to the culture media used. However, specific antibodies designed to detect StcI reacted with a protein with an unexpected molecular mass of 35 kDa in cell extracts from all expression conditions. Analysis of the gene sequence and already reported expressed sequence tags indicated the presence of an additional 29-amino-acid N-terminal region of StcI, which is not a signal peptide and which has not been previously reported. We also detected the presence of this additional N-terminal region using reverse-transcriptase polymerase chain reaction. The complete protein (NStcI) was cloned and successfully expressed in Pichia pastoris.
Collapse
Affiliation(s)
- Carolina Peña-Montes
- Food and Biotechnology Department, Chemistry Faculty, National Autonomous University of Mexico , Ciudad Universitaria, Mexico City, DF 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
7
|
Smith CA, Woloshuk CP, Robertson D, Payne GA. Silencing of the aflatoxin gene cluster in a diploid strain of Aspergillus flavus is suppressed by ectopic aflR expression. Genetics 2007; 176:2077-86. [PMID: 17565943 PMCID: PMC1950615 DOI: 10.1534/genetics.107.073460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by a 70-kb cluster of genes in Aspergillus flavus. The cluster genes are coordinately regulated and reside as a single copy within the genome. Diploids between a wild-type strain and a mutant (649) lacking the aflatoxin gene cluster fail to produce aflatoxin or transcripts of the aflatoxin pathway genes. This dominant phenotype is rescued in diploids between a wild-type strain and a transformant of the mutant containing an ectopic copy of aflR, the transcriptional regulator of the aflatoxin biosynthetic gene cluster. Further characterization of the mutant showed that it is missing 317 kb of chromosome III, including the known genes for aflatoxin biosynthesis. In addition, 939 kb of chromosome II is present as a duplication on chromosome III in the region previously containing the aflatoxin gene cluster. The lack of aflatoxin production in the diploid was not due to a unique or a mis-expressed repressor of aflR. Instead a form of reversible silencing based on the position of aflR is likely preventing the aflatoxin genes from being expressed in 649 x wild-type diploids. Gene expression analysis revealed the silencing effect is specific to the aflatoxin gene cluster.
Collapse
Affiliation(s)
- Carrie A. Smith
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Charles P. Woloshuk
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dominique Robertson
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Gary A. Payne
- Department of Genetics, Department of Plant Biology and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Corresponding author: Center for Integrated Fungal Research and Department of Plant Pathology, North Carolina State University, Box 7567, Raleigh, NC 27695-7567.E-mail:
| |
Collapse
|
8
|
Chang PK, Yabe K, Yu J. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl Environ Microbiol 2004; 70:3593-9. [PMID: 15184162 PMCID: PMC427728 DOI: 10.1128/aem.70.6.3593-3599.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In aflatoxin biosynthesis, the pathway for the conversion of 1-hydroxyversicolorone to versiconal hemiacetal acetate (VHA) to versiconal (VHOH) is part of a metabolic grid. In the grid, the steps from VHA to VHOH and from versiconol acetate (VOAc) to versiconol (VOH) may be catalyzed by the same esterase. Several esterase activities are associated with the conversion of VHA to VHOH, but only one esterase gene (estA) is present in the complete aflatoxin gene cluster of Aspergillus parasiticus. We deleted the estA gene from A. parasiticus SRRC 2043, an O-methylsterigmatocystin (OMST)-accumulating strain. The estA-deleted mutants were pigmented and accumulated mainly VHA and versicolorin A (VA). A small amount of VOAc and other downstream aflatoxin intermediates, including VHOH, versicolorin B, and OMST, also were accumulated. In contrast, a VA-accumulating mutant, NIAH-9, accumulated VA exclusively and neither VHA nor VOAc were produced. Addition of the esterase inhibitor dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the transformation recipient strain RHN1, an estA-deleted mutant, or NIAH-9 resulted in the accumulation of only VHA and VOAc. In in vitro enzyme assays, the levels of the esterase activities catalyzing the conversion of VHA to VHOH in the cell extracts of two estA-deleted mutants were decreased to approximately 10% of that seen with RHN1. Similar decreases in the esterase activities catalyzing the conversion of VOAc to VOH were also obtained. Thus, the estA-encoded esterase catalyzes the conversion of both VHA to VHOH and VOAc to VOH during aflatoxin biosynthesis.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124, USA.
| | | | | |
Collapse
|
9
|
Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 2004; 70:1253-62. [PMID: 15006741 PMCID: PMC368384 DOI: 10.1128/aem.70.3.1253-1262.2004] [Citation(s) in RCA: 553] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jiujiang Yu
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana 70124, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|