1
|
Pottosin I, Dobrovinskaya O. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies. Front Physiol 2015; 6:396. [PMID: 26733887 PMCID: PMC4686732 DOI: 10.3389/fphys.2015.00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, Mexico
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, Mexico
| |
Collapse
|
2
|
Ions channels/transporters and chloroplast regulation. Cell Calcium 2014; 58:86-97. [PMID: 25454594 DOI: 10.1016/j.ceca.2014.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/28/2022]
Abstract
Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
Collapse
|
3
|
Checchetto V, Teardo E, Carraretto L, Formentin E, Bergantino E, Giacometti GM, Szabo I. Regulation of photosynthesis by ion channels in cyanobacteria and higher plants. Biophys Chem 2013; 182:51-7. [PMID: 23891570 DOI: 10.1016/j.bpc.2013.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Photosynthesis converts light energy into chemical energy, and supplies ATP and NADPH for CO2 fixation into carbohydrates and for the synthesis of several compounds which are essential for autotrophic growth. Oxygenic photosynthesis takes place in thylakoid membranes of chloroplasts and photosynthetic prokaryote cyanobacteria. An ancestral photoautotrophic prokaryote related to cyanobacteria has been proposed to give rise to chloroplasts of plants and algae through an endosymbiotic event. Indeed, photosynthetic complexes involved in the electron transport coupled to H(+) translocation and ATP synthesis are similar in higher plants and cyanobacteria. Furthermore, some of the protein and solute/ion conducting machineries also share common structure and function. Electrophysiological and biochemical evidence support the existence of ion channels in the thylakoid membrane in both types of organisms. By allowing specific ion fluxes across thylakoid membranes, ion channels have been hypothesized to either directly or indirectly regulate photosynthesis, by modulating the proton motive force. Recent molecular identification of some of the thylakoid-located channels allowed to obtain genetic proof in favor of such hypothesis. Furthermore, some ion channels of the envelope membrane in chloroplasts have also been shown to impact on this light-driven process. Here we give an overview of thylakoid/chloroplast located ion channels of higher plants and of cyanobacterium Synechocystis sp. PCC 6803. We focus on channels shown to be implicated in the regulation of photosynthesis and discuss the possible mechanisms of action.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
5
|
Segalla A, Szabo I, Costantini P, Giacometti GM. Study of the Effect of Ion Channel Modulators on Photosynthetic Oxygen Evolution. J Chem Inf Model 2005; 45:1691-700. [PMID: 16309275 DOI: 10.1021/ci0501802] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various ion channel activities can be recorded by electrophysiological methods in the outer and inner envelope membranes of chloroplasts as well as in the thylakoid membrane. However, most of these channels are poorly characterized from a pharmacological point of view. Furthermore, the molecular identity has been determined only for a few of them, preventing an understanding of their role in plant physiology. By allowing specific ion fluxes across plastidial membranes, these ion channels may either directly or indirectly regulate photosynthesis, as has been hypothesized earlier. We have determined the effect of various ion channel modulators [indole-3-acetic acid, 5-nitro-2-(3-phenylpropylamino)-benzoate, (-)-epigallocatechin-3-gallate, p-chlorophenoxyacetic acid, Konig's polyanion, Cs+, Gd3+, 4-aminopyridine, tetraethylammonium chloride, charybdotoxin, nimodipine, and cyclosporin A] on the efficiency of photosynthetic oxygen evolution in intact chloroplasts, broken chloroplasts, and isolated thylakoids. The data may improve our understanding of chloroplast ion channels and identifies inhibitors which may be exploited for electrophysiological studies.
Collapse
Affiliation(s)
- Anna Segalla
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | |
Collapse
|
6
|
Ephritikhine G, Ferro M, Rolland N. Plant membrane proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:943-62. [PMID: 15707833 DOI: 10.1016/j.plaphy.2004.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 11/09/2004] [Indexed: 05/23/2023]
Abstract
Plant membrane proteins are involved in many different functions according to their location in the cell. For instance, the chloroplast has two membrane systems, thylakoids and envelope, with specialized membrane proteins for photosynthesis and metabolite and ion transporters, respectively. Although recent advances in sample preparation and analytical techniques have been achieved for the study of membrane proteins, the characterization of these proteins, especially the hydrophobic ones, is still challenging. The present review highlights recent advances in methodologies for identification of plant membrane proteins from purified subcellular structures. The interest of combining several complementary extraction procedures to take into account specific features of membrane proteins is discussed in the light of recent proteomics data, notably for chloroplast envelope, mitochondrial membranes and plasma membrane from Arabidopsis. These examples also illustrate how, on one hand, proteomics can feed bioinformatics for a better definition of prediction tools and, on the other hand, although prediction tools are not 100% reliable, they can give valuable information for biological investigations. In particular, membrane proteomics brings new insights over plant membrane systems, on both the membrane compartment where proteins are working and their putative cellular function.
Collapse
Affiliation(s)
- Geneviève Ephritikhine
- Institut des Sciences du Végétal, CNRS (UPR 2355), Bâtiment 22, avenue de la Terrasse, 91198 Gif sur Yvette cedex, France.
| | | | | |
Collapse
|