1
|
Makris G, Lauber M, Rüfenacht V, Gemperle C, Diez-Fernandez C, Caldovic L, Froese DS, Häberle J. Clinical and structural insights into potential dominant negative triggers of proximal urea cycle disorders. Biochimie 2020; 183:89-99. [PMID: 33309754 DOI: 10.1016/j.biochi.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.
Collapse
Affiliation(s)
- Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Matthias Lauber
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Corinne Gemperle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Nextech Invest, Bahnhofstrasse 18, 8001, Zurich, Switzerland
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
N-Acetylglutamate Synthase Deficiency Due to a Recurrent Sequence Variant in the N-acetylglutamate Synthase Enhancer Region. Sci Rep 2018; 8:15436. [PMID: 30337552 PMCID: PMC6194121 DOI: 10.1038/s41598-018-33457-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglutamate synthase deficiency (NAGSD, MIM #237310) is an autosomal recessive disorder of the urea cycle that results from absent or decreased production of N-acetylglutamate (NAG) due to either decreased NAGS gene expression or defective NAGS enzyme. NAG is essential for the activity of carbamylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of the urea cycle. NAGSD is the only urea cycle disorder that can be treated with a single drug, N-carbamylglutamate (NCG), which can activate CPS1 and completely restore ureagenesis in patients with NAGSD. We describe a novel sequence variant NM_153006.2:c.-3026C > T in the NAGS enhancer that was found in three patients from two families with NAGSD; two patients had hyperammonemia that resolved upon treatment with NCG, while the third patient increased dietary protein intake after initiation of NCG therapy. Two patients were homozygous for the variant while the third patient had the c.-3026C > T variant and a partial uniparental disomy that encompassed the NAGS gene on chromosome 17. The c.-3026C > T sequence variant affects a base pair that is highly conserved in vertebrates; the variant is predicted to be deleterious by several bioinformatics tools. Functional assays in cultured HepG2 cells demonstrated that the c.-3026C > T substitution could result in reduced expression of the NAGS gene. These findings underscore the importance of analyzing NAGS gene regulatory regions when looking for molecular causes of NAGSD.
Collapse
|
3
|
Al Kaabi EH, El-Hattab AW. N-acetylglutamate synthase deficiency: Novel mutation associated with neonatal presentation and literature review of molecular and phenotypic spectra. Mol Genet Metab Rep 2016; 8:94-8. [PMID: 27570737 PMCID: PMC4992009 DOI: 10.1016/j.ymgmr.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/07/2016] [Accepted: 08/07/2016] [Indexed: 12/30/2022] Open
Abstract
The urea cycle is the main pathway for the disposal of excess nitrogen. Carbamoylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of urea cycle, is activated by N-acetylglutamate (NAG), and thus N-acetylglutamate synthase (NAGS) is an essential part of the urea cycle. Although NAGS deficiency is the rarest urea cycle disorder, it is the only one that can be specifically and effectively treated by a drug, N-carbamylglutamate, a stable structural analogous of NAG that activates CPS1. Here we report an infant with NAGS deficiency who presented with neonatal hyperammonemia. She was found to have a novel homozygous splice-site mutation, c.1097-2A>T, in the NAGS gene. We describe the clinical course of this infant, who had rapid response to N-carbamylglutamate treatment. In addition, we reviewed the clinical and molecular spectra of previously reported individuals with NAGS deficiency, which presents in most cases with neonatal hyperammonemia, and in some cases the presentation is later, with a broad spectrum of ages and manifestations. With this broad later-onset phenotypic spectrum, maintaining a high index of suspicion is needed for the early diagnosis of this treatable disease.
Collapse
Affiliation(s)
- Eiman H Al Kaabi
- Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| |
Collapse
|
4
|
Sancho-Vaello E, Marco-Marín C, Gougeard N, Fernández-Murga L, Rüfenacht V, Mustedanagic M, Rubio V, Häberle J. Understanding N-Acetyl-L-Glutamate Synthase Deficiency: Mutational Spectrum, Impact of Clinical Mutations on Enzyme Functionality, and Structural Considerations. Hum Mutat 2016; 37:679-94. [DOI: 10.1002/humu.22995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Nadine Gougeard
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Leonor Fernández-Murga
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Véronique Rüfenacht
- University Children's Hospital and Children's Research Center; Zurich Switzerland
| | - Merima Mustedanagic
- University Children's Hospital and Children's Research Center; Zurich Switzerland
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Johannes Häberle
- University Children's Hospital and Children's Research Center; Zurich Switzerland
| |
Collapse
|
5
|
Sebestyén E, Zawisza M, Eyras E. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res 2015; 43:1345-56. [PMID: 25578962 PMCID: PMC4330360 DOI: 10.1093/nar/gku1392] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp.
Collapse
Affiliation(s)
- Endre Sebestyén
- Computational Genomics, Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain
| | - Michał Zawisza
- Universitat Politècnica de Catalunya, Jordi Girona 1-3, E08034 Barcelona, Spain
| | - Eduardo Eyras
- Computational Genomics, Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, E08010 Barcelona, Spain
| |
Collapse
|
6
|
Abstract
N-acetyl-glutamate synthase (NAGS) deficiency is a rare autosomal recessive urea cycle disorder (UCD) that uncommonly presents in adulthood. Adult presentations of UCDs include; confusional episodes, neuropsychiatric symptoms and encephalopathy. To date, there have been no detailed neurological descriptions of an adult onset presentation of NAGS deficiency. In this review we examine the clinical presentation and management of UCDs with an emphasis on NAGS deficiency. An illustrative case is provided. Plasma ammonia levels should be measured in all adult patients with unexplained encephalopathy, as treatment can be potentially life-saving. Availability of N-carbamylglutamate (NCG; carglumic acid) has made protein restriction largely unnecessary in treatment regimens currently employed. Genetic counselling remains an essential component of management of NAGS.
Collapse
|
7
|
Häberle J. Carglumic acid for the treatment of N-acetylglutamate synthase deficiency and acute hyperammonemia. Expert Rev Endocrinol Metab 2012; 7:263-271. [PMID: 30780843 DOI: 10.1586/eem.12.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carglumic acid is a structural analog and the first registered synthetic form of the naturally occurring allosteric activator of the urea cycle, N-acetylglutamate (NAG), which is the product of the enzyme NAG synthase (NAGS). Because NAG is essential for the function of carbamoylphosphate synthetase 1 as the first step of the urea cycle, a decreased availability of NAG due to primary or secondary defects of NAGS will affect ammonia detoxification in the urea cycle. Carglumic acid (Carbaglu®, Orphan Europe SARL, Paris, France) is approved for the acute and long-term treatment of primary defects of NAGS in Europe and the USA. In addition, it is approved in Europe for the treatment of acute hyperammonemia in patients with specific organic acidurias that can lead to NAG deficiency secondary to inhibition of NAGS. This article reviews the use of carglumic acid for both approved indications and considers the potential of this compound for acute hyperammonemias in general.
Collapse
Affiliation(s)
- Johannes Häberle
- a University Children's Hospital, Division of Metabolism, Children's Research Center, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland.
| |
Collapse
|
8
|
Häberle J. Role of carglumic acid in the treatment of acute hyperammonemia due to N-acetylglutamate synthase deficiency. Ther Clin Risk Manag 2011; 7:327-32. [PMID: 21941437 PMCID: PMC3176164 DOI: 10.2147/tcrm.s12703] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
N-acetylglutamate synthase (NAGS) deficiency is a rare inborn error of metabolism affecting ammonia detoxification in the urea cycle. The product of NAGS is N-acetylglutamate which is the absolutely required allosteric activator of the first urea cycle enzyme carbamoylphosphate synthetase 1. In defects of NAGS, the urea cycle function can be severely affected resulting in fatal hyperammonemia in neonatal patients or at any later stage in life. NAGS deficiency can be treated with a structural analog of N-acetylglutamate, N-carbamyl-L-glutamate, which is available for enteral use as a licensed drug. Since NAGS deficiency is an extremely rare disorder, reports on the use of N-carbamyl-L-glutamate are mainly based on single patients. According to these, the drug is very effective in treating acute hyperammonemia by avoiding the need for detoxification during the acute metabolic decompensation. Also during long-term treatment, N-carbamyl-L-glutamate is effective in maintaining normal plasma ammonia levels and avoiding the need for additional drug therapy or protein-restricted diet. Open questions remain which concern the optimal dosage in acute and long-term use of N-carbamyl-L-glutamate and potential additional disorders in which the drug might also be effective in treating acute hyperammonemia. This review focuses on the role of N-carbamyl-L-glutamate for the treatment of acute hyperammonemia due to primary NAGS deficiency but will briefly discuss the current knowledge on the role of N-carbamyl-L-glutamate for treatment of secondary NAGS deficiencies.
Collapse
Affiliation(s)
- Johannes Häberle
- Kinderspital Zürich, Abteilung Stoffwechsel, Zürich, Switzerland
| |
Collapse
|
9
|
Amstutz U, Andrey-Zürcher G, Suciu D, Jaggi R, Häberle J, Largiadèr CR. Sequence capture and next-generation resequencing of multiple tagged nucleic acid samples for mutation screening of urea cycle disorders. Clin Chem 2010; 57:102-11. [PMID: 21068339 DOI: 10.1373/clinchem.2010.150706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive genetic screening. We applied this approach to UCDs and combined it with the use of DNA bar codes for more cost-effective, parallel analyses of multiple samples. METHODS We used sectored 2240-feature medium-density oligonucleotide arrays to capture and enrich a 199-kb genomic target encompassing the complete genomic regions of 3 urea cycle genes, OTC (ornithine carbamoyltransferase), CPS1 (carbamoyl-phosphate synthetase 1, mitochondrial), and NAGS (N-acetylglutamate synthase). We used the Genome Sequencer FLX System (454 Life Sciences) to jointly analyze 4 samples individually tagged with a 6-bp DNA bar code and compared the results with those for an individually sequenced sample. RESULTS Using a low tiling density of only 1 probe per 91 bp, we obtained strong enrichment of the targeted loci to achieve ≥90% coverage with up to 64% of the sequences covered at a sequencing depth ≥10-fold. We observed a very homogeneous sequence representation of the bar-coded samples, which yielded a >30% increase in the sequence data generated per sample, compared with an individually processed sample. Heterozygous and homozygous disease-associated mutations were correctly detected in all samples. CONCLUSIONS The use of DNA bar codes and the use of sectored oligonucleotide arrays for target enrichment enable parallel, large-scale analysis of complete genomic regions for multiple genes of a disease pathway and for multiple samples simultaneously. This approach thus may provide an efficient tool for comprehensive diagnostic screening of mutations.
Collapse
Affiliation(s)
- Ursula Amstutz
- Institute of Clinical Chemistry, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Caldovic L, Morizono H, Tuchman M. Mutations and polymorphisms in the human N-acetylglutamate synthase (NAGS) gene. Hum Mutat 2007; 28:754-9. [PMID: 17421020 DOI: 10.1002/humu.20518] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
N-acetylglutamate synthase (NAGS) deficiency, an autosomal recessive disorder, is the last urea cycle disorder for which molecular testing became available. This is the first comprehensive report of 21 mutations that cause NAGS deficiency and of commonly found polymorphisms in the NAGS gene. Five mutations are reported here for the first time. A total of 10 disease-causing mutations are associated with acute neonatal hyperammonemia; the remaining mutations were found in patients with late onset disease. Residual enzymatic activities are included in this report and the deleterious effects of eight mutations were confirmed by expression studies. Mutations in the NAGS gene are distributed throughout its reading frame. No mutations have been found in exon 1, which encodes for the putative mitochondrial targeting signal and variable segment of NAGS. Three polymorphisms have been found. Early, accurate, and specific diagnosis of NAGS deficiency is critical since this condition can be successfully treated with N-carbamylglutamate (NCG, Carbaglu; Orphan Europe). Treatment with NCG should be initiated as soon as a patient is suspected of having NAGS deficiency. Molecular testing represents the most reliable method of diagnosis.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Children's Research Institute, Children's National Medical Center, George Washington University, Washington, DC 20010, USA.
| | | | | |
Collapse
|
11
|
Denecke J, Kranz C, Kemming D, Koch HG, Marquardt T. An activated 5? cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id). Hum Mutat 2004; 23:477-86. [PMID: 15108280 DOI: 10.1002/humu.20026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A defect of the dolichyl-P-Man:Man5GlcNAc2-PP-dolichyl mannosyltransferase encoded by the ALG3 gene (alias NOT56L) causes congenital disorder of glycosylation type Id (CDG-Id). In this work, a new mutation in the ALG3 gene causing atypical splicing is described with characterization of expression levels and transcript stabilities of the different splice products. A silent mutation in exon 1 of the ALG3 gene (c.165C<T) resulted in a deletion in the corresponding transcripts (c.160_196del) due to the activation of a cryptic donor splice site. Expression studies revealed that negligible amounts of normal transcripts were present in the patient. The deletion in the ALG3 gene generated a premature termination codon (PTC) coding for an ALG3 protein truncated after the first N-terminal transmembranous domain (p.Val54fsX66). Nonsense mediated decay (NMD) of mRNA is a general mechanism for clearing of RNA molecules containing suitable PTCs. However, suppression of NMD using cycloheximide had no influence on ALG3 transcript levels, although the PTCs of the transcript fulfill the criteria for the initiation of NMD. The results presented in this work demonstrate that factors abrogating NMD of the ALG3 gene exists and that the ALG3 gene can serve as a valuable tool for further investigations of the regulation of NMD.
Collapse
Affiliation(s)
- Jonas Denecke
- Department of Pediatrics, University Hospital of Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|