1
|
Amargant F, Barragan M, Vassena R, Vernos I. Insights of the tubulin code in gametes and embryos: from basic research to potential clinical applications in humans†. Biol Reprod 2020; 100:575-589. [PMID: 30247519 DOI: 10.1093/biolre/ioy203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Microtubules are intracellular filaments that define in space and in time a large number of essential cellular functions such as cell division, morphology and motility, intracellular transport and flagella and cilia assembly. They are therefore essential for spermatozoon and oocyte maturation and function, and for embryo development. The dynamic and functional properties of the microtubules are in large part defined by various classes of interacting proteins including MAPs (microtubule associated proteins), microtubule-dependent motors, and severing and modifying enzymes. Multiple mechanisms regulate these interactions. One of them is defined by the high diversity of the microtubules themselves generated by the combination of different tubulin isotypes and by several tubulin post-translational modifications (PTMs). This generates a so-called tubulin code that finely regulates the specific set of proteins that associates with a given microtubule thereby defining the properties and functions of the network. Here we provide an in depth review of the current knowledge on the tubulin isotypes and PTMs in spermatozoa, oocytes, and preimplantation embryos in various model systems and in the human species. We focus on functional implications of the tubulin code for cytoskeletal function, particularly in the field of human reproduction and development, with special emphasis on gamete quality and infertility. Finally, we discuss some of the knowledge gaps and propose future research directions.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C. Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 2017; 130:938-949. [PMID: 28104815 DOI: 10.1242/jcs.199091] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Tubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3-/- mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration.
Collapse
Affiliation(s)
- Montserrat Bosch Grau
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Christel Masson
- CERTO Centre d'Etudes et de Recherches Thérapeutiques en Ophtalmologie, Université Paris Sud, Université Paris-Saclay, CNRS UMR9197, Orsay F-91405, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Cecilia Rocha
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Olivia Tort
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Patricia Marques Sousa
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Sophie Vacher
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris F-75005, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| |
Collapse
|
3
|
Groebner JL, Tuma PL. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease. Biomolecules 2015; 5:2140-59. [PMID: 26393662 PMCID: PMC4598792 DOI: 10.3390/biom5032140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the "tubulin code" are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease.
Collapse
Affiliation(s)
- Jennifer L Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
4
|
Abstract
Microtubules give rise to intracellular structures with diverse morphologies and dynamics that are crucial for cell division, motility, and differentiation. They are decorated with abundant and chemically diverse posttranslational modifications that modulate their stability and interactions with cellular regulators. These modifications are important for the biogenesis and maintenance of complex microtubule arrays such as those found in spindles, cilia, neuronal processes, and platelets. Here we discuss the nature and subcellular distribution of these posttranslational marks whose patterns have been proposed to constitute a tubulin code that is interpreted by cellular effectors. We review the enzymes responsible for writing the tubulin code, explore their functional consequences, and identify outstanding challenges in deciphering the tubulin code.
Collapse
Affiliation(s)
- Ian Yu
- From the Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, NINDS, and
| | - Christopher P Garnham
- From the Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, NINDS, and
| | - Antonina Roll-Mecak
- From the Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, NINDS, and NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Abstract
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, 91405 Orsay, France Centre National de la Recherche Scientifique Unité Mixte de Recherche 3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France
| |
Collapse
|
6
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Sperry AO. The dynamic cytoskeleton of the developing male germ cell. Biol Cell 2012; 104:297-305. [PMID: 22276751 DOI: 10.1111/boc.201100102] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/20/2012] [Indexed: 11/28/2022]
Abstract
Mammalian spermatogenesis is characterised by dramatic cellular change to transform the non-polar spermatogonium into a highly polarised and functional spermatozoon. The acquisition of cell polarity is a requisite step for formation of viable sperm. The polarity of the spermatozoon is clearly demonstrated by the acrosome at the apical pole of the cell and the flagellum at the opposite end. Spermatogenesis consists of three basic phases: mitosis, meiosis and spermiogenesis. The final phase represents the period of greatest cellular change where cell-type specific organelles such as the acrosome and the flagellum form, the nucleus migrates to the plasma membrane and elongates, chromatin condenses and residual cytoplasm is removed. An important feature of spermatogenesis is the change in the cytoskeleton that occurs throughout this pathway. In this review, the author will provide an overview of these transformations and provide insight into possible modes of regulation of these rearrangements during spermatogenesis. Although primary focus will be given to the microtubule cytoskeleton, the importance of actin filaments to the cellular transformation of the male germ cell will also be discussed.
Collapse
Affiliation(s)
- Ann O Sperry
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
8
|
Hoyle HD, Turner FR, Raff EC. Axoneme-dependent tubulin modifications in singlet microtubules of the Drosophila sperm tail. ACTA ACUST UNITED AC 2008; 65:295-313. [PMID: 18205200 DOI: 10.1002/cm.20261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drosophila melanogaster sperm tubulins are posttranslationally glutamylated and glycylated. We show here that axonemes are the substrate for these tubulin C-terminal modifications. Axoneme architecture is required, but full length, motile axonemes are not necessary. Tubulin glutamylation occurs during or shortly after assembly into the axoneme; only glutamylated tubulins are glycylated. Tubulins in other testis microtubules are not modified. Only a small subset of total Drosophila sperm axoneme tubulins have these modifications. Biochemical fractionation of Drosophila sperm showed that central pair and accessory microtubules have the majority of poly-modified tubulins, whereas doublet microtubules have only small amounts of mono- and oligo-modified tubulins. Glutamylation patterns for different beta-tubulins experimentally assembled into axonemes were consistent with utilization of modification sites corresponding to those identified in other organisms, but surrounding sequence context was also important. We compared tubulin modifications in the 9 + 9 + 2 insect sperm tail axonemes of Drosophila with the canonical 9 + 2 axonemes of sperm of the sea urchin Lytichinus pictus and the 9 + 0 motile sperm axonemes of the eel Anguilla japonica. In contrast to Drosophila sperm, L. pictus sperm have equivalent levels of modified tubulins in both doublet and central pair microtubule fractions, whereas the doublets of A. japonica sperm exhibit little glutamylation but extensive glycylation. Tubulin C-terminal modifications are a prevalent feature of motile axonemes, but there is no conserved pattern for placement or amount of these
Collapse
Affiliation(s)
- Henry D Hoyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
9
|
Popodi EM, Hoyle HD, Turner FR, Raff EC. The proximal region of the β-tubulin C-terminal tail is sufficient for axoneme assembly. ACTA ACUST UNITED AC 2005; 62:48-64. [PMID: 16080206 DOI: 10.1002/cm.20085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have used Drosophila testis-specific beta2-tubulin to determine sequence requirements for different microtubules. The beta2-tubulin C-terminal tail has unique sperm-specific functions [Dev Biol 158:267-286 (2003)] and is also important for forming stable heterodimers with alpha-tubulin, a general function common to all microtubules [Mol Biol Cell 12(7):2185-2194 (2001)]. beta-tubulins utilized in motile 9 + 2 axonemes contain a C-terminal sequence "axoneme motif" [Science 275 (1997) 70-73]. C-terminal truncated beta2-tubulin cannot form the sperm tail axoneme. Here we show that a partially truncated beta2-tubulin (beta2Delta7) containing only the proximal portion of the C-terminal tail, including the axoneme motif, can support production of functional motile sperm. We conclude that these proximal eight amino acids specify the binding site for protein(s) essential to support assembly of the motile axoneme. Males that express beta2Delta7, although they are fertile, produce fewer sperm than wild type males. Beta2Delta7 causes a slightly increased error rate in spermatogenesis attributable to loss of stabilizing properties intrinsic to the full-length C-terminal tail. Therefore, beta2Delta7 males would be at a selective disadvantage and it is likely that the full-length C-terminus would be essential in the wild and in evolution.
Collapse
Affiliation(s)
- Ellen M Popodi
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
10
|
Wang Q, Hirohashi Y, Furuuchi K, Zhao H, Liu Q, Zhang H, Murali R, Berezov A, Du X, Li B, Greene MI. The Centrosome in Normal and Transformed Cells. DNA Cell Biol 2004; 23:475-89. [PMID: 15307950 DOI: 10.1089/1044549041562276] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The centrosome is a unique organelle that functions as the microtubule organizing center in most animal cells. During cell division, the centrosomes form the poles of the bipolar mitotic spindle. In addition, the centrosomes are also needed for cytokinesis. Each mammalian somatic cell typically contains one centrosome, which is duplicated in coordination with DNA replication. Just like the chromosomes, the centrosome is precisely reproduced once and only once during each cell cycle. However, it remains a mystery how this protein-based structure undergoes accurate duplication in a semiconservative manner. Intriguingly, amplification of the centrosome has been found in numerous forms of cancers. Cells with multiple centrosomes tend to form multipolar spindles, which result in abnormal chromosome segregation during mitosis. It has therefore been postulated that centrosome aberration may compromise the fidelity of cell division and cause chromosome instability. Here we review the current understanding of how the centrosome is assembled and duplicated. We also discuss the possible mechanisms by which centrosome abnormality contributes to the development of malignant phenotype.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 2004; 4:938-47. [PMID: 14685172 DOI: 10.1038/nrm1260] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Westermann
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
12
|
Verdier-Pinard P, Wang F, Burd B, Angeletti RH, Horwitz SB, Orr GA. Direct Analysis of Tubulin Expression in Cancer Cell Lines by Electrospray Ionization Mass Spectrometry. Biochemistry 2003; 42:12019-27. [PMID: 14556633 DOI: 10.1021/bi0350147] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential expression of tubulin isotypes, mutations, and/or post-translational modifications in sensitive and Taxol-resistant cell lines suggests the existence of tubulin-based mechanisms of resistance. Since tubulin isotypes are defined by their C-terminal sequence, we previously described a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of tubulin diversity in human cell lines by analysis of their CNBr-released C-terminal peptides [Rao, S., Aberg, F., Nieves, E., Horwitz, S. B., and Orr, G. A. (2001) Biochemistry 40, 2096-103]. We now describe the liquid chromatography/electrospray ionization mass spectrometry analysis of native tubulins in Taxol-stabilized microtubules from parental and Taxol/epothilone-resistant human cancer cell lines. This method allows the direct determination of tubulin isotype composition, including post-translational modifications and mutations occurring throughout the entire protein. Four major isotypes, betaI-, betaIVb-, Kalpha1-, and alpha6-tubulin, were detected in two human carcinoma cell lines, A549 and HeLa. betaIII-Tubulin represented a minor species, as did alpha4-tubulin which was detected for the first time in both cell lines. The three alpha-tubulins were almost totally tyrosinated, and post-translational modifications were limited to low levels of monoglutamylation of Kalpha1-, betaI-, and betaIII-tubulin. betaII- and betaIVa-tubulins were not detected in either parental or drug-resistant cell lines, in contrast to previous RNA-based studies. Since mutations can occur in a single tubulin allele, the question as to whether the wild-type and mutant transcripts are both translated, and to what levels, is important. Heterozygous expression of Kalpha1- or betaI-tubulin mutants that introduced mass changes as small as 26 Da was readily detected in native tubulins isolated from Taxol- and epothilone-resistant cell lines.
Collapse
Affiliation(s)
- Pascal Verdier-Pinard
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
13
|
Rao S, Aberg F, Nieves E, Band Horwitz S, Orr GA. Identification by mass spectrometry of a new alpha-tubulin isotype expressed in human breast and lung carcinoma cell lines. Biochemistry 2001; 40:2096-103. [PMID: 11329278 DOI: 10.1021/bi002323d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extensive C-terminal molecular heterogeneity of alpha- and beta-tubulin is a consequence of multiple isotypes, the products of distinct genes, that undergo several posttranslational modifications. These include polyglutamylation and polyglycylation of both subunits, reversible tyrosination and removal of the penultimate glutamate from alpha-tubulin, and phosphorylation of the beta III isotype. A mass spectrometry-based method has been developed for the analysis of the C-terminal diversity of tubulin from human cell lines. Total cell extracts are resolved by SDS--PAGE and transferred to nitrocellulose, and the region of the blot corresponding to tubulin (approximately 50 kDa) was excised and digested with CNBr to release the highly divergent C-terminal tubulin fragments. The masses of the human alpha- and beta-tubulin CNBr-derived C-terminal peptides are all in the 1500--4000 Da mass range and can be analyzed directly by MALDI-TOF mass spectrometry in the negative ion mode without significant interference from other released peptides. In this study, the tubulin isotype diversity in MDA-MB-231, a human breast carcinoma cell line, and A549, a human non-small lung cancer cell line, is reported. The major tubulin isotypes present in both cell lines are k-alpha 1 and beta 1. Importantly, we report a previously unknown alpha isotype present at significant levels in both cell lines. Moreover, the degree of posttranslational modifications to all isotypes was limited. Glu-tubulin, in which the C-terminal tyrosine of alpha-tubulin is removed, was not detected. In contrast to mammalian neuronal tubulin which exhibits extensive polyglutamylation, only low-level monoglutamylation of the k-alpha 1 and beta 1 isotypes was observed in these two human cell lines.
Collapse
Affiliation(s)
- S Rao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
15
|
Weber K, Schneider A, Westermann S, Müller N, Plessmann U. Posttranslational modifications of alpha- and beta-tubulin in Giardia lamblia, an ancient eukaryote. FEBS Lett 1997; 419:87-91. [PMID: 9426225 DOI: 10.1016/s0014-5793(97)01436-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tubulin of Giardia lamblia, a representative of the oldest eukaryotes, was screened for posttranslational modifications. Mass spectrometry of the carboxy-terminal peptides documents a large number of variants. Both alpha- and beta-tubulin show polyglycylation with up to 20 and 15 extra glycyl residues respectively. Minor variants show a low level of glutamylation without or with glycylation. The glutamylation-specific antibody GT335 detects alpha- and beta-tubulin in immunoblots. The terminal tyrosine is fully retained in alpha-tubulin, which is completely acetylated at Lys-40. Thus except for the detyrosination/tyrosination cycle all posttranslational modifications known for higher eukaryotes are already present in Giardia.
Collapse
Affiliation(s)
- K Weber
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|