1
|
Ju Y, Fang S, Liu L, Ma H, Zheng L. The function of the ELF3 gene and its mechanism in cancers. Life Sci 2024; 346:122637. [PMID: 38614305 DOI: 10.1016/j.lfs.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
E74-like factor 3 (ELF3) is an important member of the E-twenty-six (ETS) transcription factor family. ELF3 is expressed in various types of cells and regulates a variety of biological behaviors, such as cell proliferation, differentiation, apoptosis, migration, and invasion, by binding to DNA to regulate the expression of other genes. In recent years, studies have shown that ELF3 plays an important role in the occurrence and development of many tumors and inflammation and immune related diseases. ELF3 has different functions and expression patterns in different tumors; it can function as a tumor suppressor gene or an oncogene, highlighting its dual effects of tumor promotion and inhibition. ELF3 also affects the levels of tumor immunity-related cytokines and is involved in the regulation and expression of multiple signaling pathways. In tumor therapy, ELF3 is a complex and multifunctional gene and has become a key focus of targeted treatment research. An in-depth study of the biological function of ELF3 can help to elucidate its role in biological processes and provide ideas and a basis for the development and clinical application of ELF3-related therapeutic methods. This review introduces the structure and physiological and cellular functions of the ELF3 gene, summarizes the mechanisms of action of ELF3 in different types of malignant tumors and its role in immune regulation, inflammation, etc., and discusses treatment methods for ELF3-related diseases, providing significant reference value for scholars studying the ELF3 gene and related diseases.
Collapse
Affiliation(s)
- Yiheng Ju
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Fang
- Yantai Penglai People's Hospital, Yantai, China
| | - Lei Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Longbo Zheng
- Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
3
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Zhao W, Sun Q, Yu Z, Mao S, Jin Y, Li J, Jiang Z, Zhang Y, Chen M, Chen P, Chen D, Xu H, Ding S, Yu Z. MiR-320a-3p/ELF3 axis regulates cell metastasis and invasion in non-small cell lung cancer via PI3K/Akt pathway. Gene 2018; 670:31-37. [PMID: 29803922 DOI: 10.1016/j.gene.2018.05.100] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) play important roles in tumorigenesis and tumor progression. In this study, we investigated the role of miR-320a-3p in non-small cell lung cancer (NSCLC). Expressions of miR-320a-3p were firstly determined in 80 NSCLC patients' cancer tissues and adjacent normal lung tissues by qRT-PCR. Then MTT assay, cell migration and invasion assays were performed in vitro. Potential binding sites on target gene of miR-320a-3p were predicted and luciferase reporter assay was used to identify the potential binding sites. Tumorigenesis assay were performed in nude mice by injecting A549 cells which stably express miR-320a-3p. Results indicated that high expression of miR-320a-3p suppresses cell proliferation, migration and invasion through the inactivation of PI3K/Akt signaling pathway in NSCLC cells. Smaller tumor size and lighter weight were also found in nude mice which had miR-320a-3p higher expressed. Furthermore, data from luciferase reporter assay proved the direct binding of miR-320a-3p on the 3'UTR region of ELF3 mRNA, this could further decrease ELF3 expression transcriptionally. We provided evidence that miR-320a-3p might work as a tumor suppressor in NSCLC both in vivo and in vitro.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Qiang Sun
- Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080, PR China
| | - Zepeng Yu
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Shuai Mao
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Yingkang Jin
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Jiajun Li
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Zhiyi Jiang
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yongqiang Zhang
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Mian Chen
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Peiran Chen
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Dongdong Chen
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Hailin Xu
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Shangwei Ding
- Department of Ultrasonography, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, PR China.
| | - Zhiqi Yu
- Department of Respiratory Medicine, The second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| |
Collapse
|
5
|
Lee CM, Gupta S, Parodo J, Wu J, Marshall JC, Hu J. The uncovering of ESE-1 in human neutrophils: implication of its role in neutrophil function and survival. Genes Immun 2015; 16:356-61. [PMID: 25906252 DOI: 10.1038/gene.2015.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Epithelium-specific Ets transcription factor 1 (ESE-1) is a member of the E26 transformation-specific family of transcription factors that has an epithelial-restricted constitutive expression but is induced by inflammatory stimuli in non-epithelial cells. Here we report that ESE-1 is constitutively expressed in human, but not in murine, neutrophils and that ESE-1 is modestly upregulated in septic patient neutrophils. In normal human neutrophils, ESE-1 was detected at both RNA and protein levels but was found to be an unstable nuclear protein ex vivo. ESE-1 transcription was also induced during all-trans retinoic acid-mediated HL-60 differentiation, a human promyelocytic cell line often used as an in vitro model of human neutrophils. Elf3-/- mice had normal neutrophils but a reduced number of circulating B-lymphocytes. These findings indicate a potential role of ESE-1 in regulating human neutrophil differentiation and function, and that it has different roles in the immune system of different species.
Collapse
Affiliation(s)
- C M Lee
- 1] SickKids Research Institute, Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Hospital, Toronto, Ontario, Canada [2] Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada [3] The Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - S Gupta
- 1] The Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada [2] Human Biology Department, University of Toronto, Toronto, Ontario, Canada
| | - J Parodo
- 1] The Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada [2] Department of Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Wu
- SickKids Research Institute, Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Hospital, Toronto, Ontario, Canada
| | - J C Marshall
- 1] The Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada [2] Department of Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Hu
- 1] SickKids Research Institute, Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Hospital, Toronto, Ontario, Canada [2] Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Elf3 drives β-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death Dis 2014; 5:e1263. [PMID: 24874735 PMCID: PMC4047871 DOI: 10.1038/cddis.2014.206] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/14/2023]
Abstract
Aberrant regulation of the Wnt/β-catenin pathway plays important roles in colorectal carcinogenesis, with over 90% of cases of sporadic colon cancer featuring β-catenin accumulation. While ubiquitination-mediated degradation is widely accepted as a major route for β-catenin protein turnover, little is known about the regulation of β-catenin in transcriptional level. Here we show that Elf3, a member of the E-twenty-six family of transcription factors, drives β-catenin transactivation and associates with poor survival of colorectal cancer (CRC) patients. We first found recurrent amplification and upregulation of Elf3 in CRC tissues, and further Gene Set Enrichment Analysis identified significant association between Elf3 expression and activity of WNT/β-catenin pathway. Chromatin immunoprecipitation and electrophoretic mobility shift assay consistently revealed that Elf3 binds to and transactivates β-catenin promoter. Ectopic expression of Elf3 induces accumulation of β-catenin in both nucleus and cytoplasm, causing subsequent upregulation of several effector genes including c-Myc, VEGF, CCND1, MMP-7 and c-Jun. Suppressing Elf3 in CRC cells attenuates β-catenin signaling and decreases cell proliferation, migration and survival. Targeting Elf3 in xenograft tumors suppressed tumor progression in vivo. Taken together, our data identify Elf3 as a pivotal driver for β-catenin signaling in CRC, and highlight potential prognostic and therapeutic significance of Elf3 in CRC.
Collapse
|
7
|
Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. J Transl Med 2012; 92:320-30. [PMID: 22157719 DOI: 10.1038/labinvest.2011.186] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E26 transformation-specific (ETS) family of transcription factors comprises of 27 and 26 members in humans and mice, respectively, which are known to regulate many different biological processes, including cell proliferation, cell differentiation, embryonic development, neoplasia, hematopoiesis, angiogenesis, and inflammation. The epithelium-specific ETS transcription factor-1 (ESE-1) is a physiologically important ETS transcription factor, which has been shown to play a role in the pathogenesis of various diseases, and was originally characterized as having an epithelial-restricted expression pattern, thus placing it within the epithelium-specific ETS subfamily. Despite a large body of published work on ETS biology, much remains to be learned about the precise functions of ESE-1 and other epithelium-specific ETS factors in regulating diverse disease processes. Clues as to the specific function of ESE-1 in the setting of various diseases can be obtained from studies aimed at examining the expression of putative target genes regulated by ESE-1. Thus, this review will focus primarily on the various roles of ESE-1 in different pathophysiological processes, including regulation of epithelial cell differentiation during both intestinal development and lung regeneration; regulation of dendritic cell-driven T-cell differentiation during allergic airway inflammation; regulation of mammary gland development and breast cancer; and regulation of the effects of inflammatory stimuli within the setting of synovial joint and vascular inflammation. Understanding the exact mechanisms by which ESE-1 regulates these processes can have important implications for the treatment of a wide range of diseases.
Collapse
|
8
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
9
|
Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H. Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res 2005; 65:10024-31. [PMID: 16267028 DOI: 10.1158/0008-5472.can-05-1944] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies showed that the WTH3 gene functioned as a negative regulator during multidrug resistance (MDR) development in vitro. To understand whether this gene is also involved in clinical drug resistance, hypermethylation at its promoter region observed in cultured MDR MCF7/AdrR cells was examined in primary drug-resistant breast cancer epithelial cells isolated from effusions of breast cancer patients. The results showed that this event also occurred in drug-resistant breast cancer epithelial cells and a newly induced drug-resistant cell line, MCF7/inR. Interestingly, we found that a CpG (CpG 23) that was close to the TATA-like box was constantly methylated in the WTH3 promoter of drug-resistant breast cancer epithelial and cultured MDR cells. Mutagenic study suggested that this CpG site had a functional effect on promoter activity. We also discovered that MCF7/AdrR cells treated with trichostatin A, a histone deacetylase inhibitor, exhibited higher WTH3, but lower MDR1, expression. A reverse correlation between WTH3 and MDR1 gene expression was also observed in MCF7/AdrR, and its non-MDR parental cell line, MCF7/WT. This result indicated that both DNA methylation and histone deacetylase could act in concert to inhibit WTH3 and consequently stimulate MDR1 expression. This hypothesis was supported by data obtained from introducing the WTH3 transgene into MDR cell lines, which reduced endogenous MDR1 expression. Therefore, our studies suggested that the behavior of WTH3 in primary drug-resistant breast cancer epithelial cells was similar to that in a model system where epigenetic regulation of the WTH3 gene was linked to the MDR phenotype.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Cancer can be defined as a genetic disease, resulting as a consequence of multiple events associated with initiation, promotion and metastatic growth. Cancer results from the loss of control of cellular homeostasis. Cell homeostasis is the result of the balance between proliferation and cell death, while cellular transformation can be viewed as a loss of relationship between these events. Oncogenes and tumour suppressor genes act as modulators of cell proliferation, while the balance of apoptotic and anti-apoptotic genes controls cell death. All cancer cells acquire similar sets of functional capacities: (1) independence from mitogenic/growth signals; (2) loss of sensitivity to "anti-growth" signals; (3) evade apoptosis; (4) Neo-angiogenic conversion; (5) release from senescence; and (6) invasiveness and metastasis. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection as well as better diagnosis and staging of disease with detection of minimal residual disease recurrences and evaluation of response to therapy; (2) prevention; and (3) novel treatment strategies. We feel that increased understanding of ETS-regulated biological pathways will directly impact these areas. ETS proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Identification of target genes that are regulated by a specific transcription factor is one of the most critical areas in understanding the molecular mechanisms that control transcription. Furthermore, identification of target gene promoters for normal and oncogenic transcription factors provides insight into the regulation of genes that are involved in control of normal cell growth, and differentiation, as well as provide information critical to understanding cancer development. This review will highlight the current understanding of ETS genes and their role in cancer.
Collapse
Affiliation(s)
- Arun Seth
- Molecular and Cellular Biology Research, Laboratory of Molecular Pathology, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
| | | |
Collapse
|