1
|
High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci Rep 2017; 7:12726. [PMID: 29018237 PMCID: PMC5635008 DOI: 10.1038/s41598-017-12939-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023] Open
Abstract
The high-throughput analysis of satellite DNA (satDNA) content, by means of Illumina sequencing, unveiled 45 satDNA families in the genome of Astyanax paranae, with repeat unit length (RUL) ranging from 6 to 365 bp and marked predominance of short satellites (median length = 59 bp). The analysis of chromosomal location of 35 satDNAs in A. paranae, A. fasciatus and A. bockmanni revealed that most satellites are shared between the three species and show highly similar patterns of chromosome distribution. The high similarity in satellite DNA content between these species is most likely due to their recent common descent. Among the few differences found, the ApaSat44-21 satellite was present only on the B chromosome of A. paranae, but not on the A or B chromosomes of the two other species. Likewise, the ApaSat20-18 satellite was B-specific in A. paranae but was however present on A and B chromosomes of A. fasciatus and A. bockmanni. The isochromosome nature of B chromosomes in these species was evidenced by the symmetric location of many satDNAs on both B chromosome arms, and the lower symmetry observed in the A. fasciatus BfMa chromosome suggests that it is older than those analyzed in A. paranae and A. bockmanni.
Collapse
|
2
|
Schmid M, Steinlein C, Yano CF, Cioffi MB. Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes. Cytogenet Genome Res 2016; 147:169-78. [PMID: 26895457 DOI: 10.1159/000444067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.
Collapse
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Wx00FC;rzburg, Wx00FC;rzburg, Germany
| | | | | | | |
Collapse
|
3
|
Splendore de Borba R, Lourenço da Silva E, Parise-Maltempi PP. Chromosome mapping of retrotransposable elements Rex1 and Rex3 in Leporinus Spix, 1829 species (Characiformes: Anostomidae) and its relationships among heterochromatic segments and W sex chromosome. Mob Genet Elements 2013; 3:e27460. [PMID: 24404417 DOI: 10.4161/mge.27460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/28/2013] [Accepted: 12/08/2013] [Indexed: 01/21/2023] Open
Abstract
The family Anostomidae is an interesting model for studies of repetitive elements, mainly because of the presence of high numbers of heterochromatic segments related to a peculiar system of female heterogamety, which is restricted to a few species of Leporinus genus. Thus, cytogenetic mapping of the retrotransposable elements Rex1, Rex3, and Rex6 was performed in six Leporinus species, to elucidate the genomic organization of this genus. The sequencing of the Rex1 and Rex3 elements detected different base pair compositions in these elements among species, whereas the Rex6 element was not identified in the genomes of these species. FISH analysis using Rex1 detected different distribution patterns, L. elongatus, L. macrocephalus, and L. obtusidens had clusters in the terminal regions, whereas the signals were dispersed throughout all of the chromosomes with some signals in the terminal position in other species. The Rex3 signals were found mainly in the terminal positions in all the chromosomes of all species. The W chromosomes of L. elongatus, L. macrocephalus, and L. obtusidens contained the Rex1 and Rex3 signal in an interstitial position. These results suggest the emergence of different activity levels for these elements during the evolution of the species analyzed. Despite the conserved karyotype macrostructure species Leporinus often discussed, our results show some variation in hybridization patterns, particularly between the species with specific patterns in their sex chromosomes and species without this differentiated system.
Collapse
Affiliation(s)
- Rafael Splendore de Borba
- Instituto de Biociências; Universidade Estadual Paulista (UNESP) "Julio de Mesquita Filho," Rio Claro; Departamento de Biologia; Laboratório de Citogenética; Rio Claro, SP Brazil
| | | | - Patrícia Pasquali Parise-Maltempi
- Instituto de Biociências; Universidade Estadual Paulista (UNESP) "Julio de Mesquita Filho," Rio Claro; Departamento de Biologia; Laboratório de Citogenética; Rio Claro, SP Brazil
| |
Collapse
|
4
|
Pazian MF, Shimabukuro-Dias CK, Pansonato-Alves JC, Oliveira C, Foresti F. Chromosome painting of Z and W sex chromosomes in Characidium (Characiformes, Crenuchidae). Genetica 2013; 141:1-9. [PMID: 23344657 DOI: 10.1007/s10709-013-9701-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/17/2013] [Indexed: 01/23/2023]
Abstract
Some species of the genus Characidium have heteromorphic ZZ/ZW sex chromosomes with a totally heterochromatic W chromosome. Methods for chromosome microdissection associated with chromosome painting have become important tools for cytogenetic studies in Neotropical fish. In Characidium cf. fasciatum, the Z chromosome contains a pericentromeric heterochromatin block, whereas the W chromosome is completely heterochromatic. Therefore, a probe was produced from the W chromosome through microdissection and degenerate oligonucleotide-primed polymerase chain reaction amplification. FISH was performed using the W probe on the chromosomes of specimens of this species. This revealed expressive marks in the pericentromeric region of the Z chromosome as well as a completely painted W chromosome. When applying the same probe on chromosome preparations of C. cf. gomesi and Characidium sp., a pattern similar to C. cf. fasciatum was found, while C. cf. zebra, C. cf. lagosantense and Crenuchus spilurus species showed no hybridization signals. Structural changes in the chromosomes of an ancestral sexual system in the group that includes the species C. cf. gomesi, C. cf. fasciatum and Characidium sp., could have contributed to the process of speciation and could represent a causal mechanism of chromosomal diversification in this group. The heterochromatinization process possibly began in homomorphic and homologous chromosomes of an ancestral form, and this process could have given rise to the current patterns found in the species with sex chromosome heteromorphism.
Collapse
Affiliation(s)
- Marlon F Pazian
- Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior S/N, Rubião Júnior, Botucatu, SP, Brazil.
| | | | | | | | | |
Collapse
|
5
|
da Silva EL, de Borba RS, Parise-Maltempi PP. Chromosome mapping of repetitive sequences in Anostomidae species: implications for genomic and sex chromosome evolution. Mol Cytogenet 2012; 5:45. [PMID: 23228116 PMCID: PMC3541136 DOI: 10.1186/1755-8166-5-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/31/2012] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED BACKGROUND Members of the Anostomidae family provide an interesting model system for the study of the influence of repetitive elements on genome composition, mainly because they possess numerous heterochromatic segments and a peculiar system of female heterogamety that is restricted to a few species of the Leporinus genus. The aim of this study was to isolate and identify important new repetitive DNA elements in Anostomidae through restriction enzyme digestion, followed by cloning, characterisation and chromosome mapping of this fragment. To identify repetitive elements in other Leporinus species and expand on studies of repetitive elements in Anostomidae, hybridisation experiments were also performed using previously described probes of LeSpeI repetitive elements. RESULTS The 628-base pair (bp) LeSpeII fragment was hybridised to metaphase cells of L. elongatus individuals as well as those of L. macrocephalus, L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii and S. isognathus. In L. elongatus, both male and female cells contained small clusters of LeSpeII repetitive elements dispersed on all of the chromosomes, with enrichment near most of the terminal portions of the chromosomes. In the female sex chromosomes of L. elongatus (Z2,Z2/W1W2), however, this repeated element was absent. In the remaining species, a dispersed pattern of hybridisation was observed on all chromosomes irrespective of whether or not they were sex chromosomes. The repetitive element LeSpeI produced positive hybridisations signals only in L. elongatus, L. macrocephalus and L. obtusidens, i.e., species with differentiated sex chromosomes. In the remaining species, the LeSpeI element did not produce hybridisation signals. CONCLUSIONS Results are discussed in terms of the effects of repetitive sequences on the differentiation of the Anostomidae genome, especially with respect to sex chromosome evolution. LeSpeII showed hybridisation patterns typical of Long Interspersed Elements (LINEs). The differential distribution of this element may be linked to sex chromosome differentiation in L. elongatus species. The relationship between sex chromosome specificity and the LeSpeI element is confirmed in the species L. elongatus, L. macrocephalus and L. obtusidens.
Collapse
Affiliation(s)
- Edson Lourenço da Silva
- Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil
| | - Rafael Splendore de Borba
- Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil
| | - Patrícia Pasquali Parise-Maltempi
- Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil
| |
Collapse
|
6
|
Coluccia E, Pichiri G, Nieddu M, Coni P, Manconi S, Deiana AM, Salvadori S, Mezzanotte R. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae). Eur J Histochem 2011; 55:e12. [PMID: 22193293 PMCID: PMC3284148 DOI: 10.4081/ejh.2011.e12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/18/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022] Open
Abstract
Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42) but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs) distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI) obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR). Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.
Collapse
Affiliation(s)
- E Coluccia
- Dipartimento di Biologia Animale ed Ecologia, Università di Cagliari, via T. Fiorelli, 1, 09126 Cagliari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Martinez PA, de Araujo WC, Molina WF. Derived cytogenetic traits, multiple NORs and B chromosomes in the compact karyotype of Canthigaster figueiredoi (Tetraodontiformes). Mar Genomics 2010; 3:85-9. [DOI: 10.1016/j.margen.2010.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
8
|
Sola L, Gornung E. Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): an overview. Genetica 2002; 111:397-412. [PMID: 11841183 DOI: 10.1023/a:1013776323077] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The zebrafish, Danio rerio, has recently become the model system for the genetic analysis of vertebrate development. This paper reviews the advances in zebrafish cytogenetics, obtained through classical and molecular techniques, which will lead to the assignment of specific linkage groups to specific chromosome pairs in the zebrafish genome project. Several chromosome pairs of the 50-chromosome karyotype of D. rerio were differentially stained by classical staining techniques and additional information has been obtained by molecular cytogenetics. Indeed, the analysis of constitutive heterochromatin by C-banding and base-specific fluorochrome staining had suggested a differential composition of peri- and paracentromeric constitutive heterochromatin. The chromosome mapping of distinct AT- and GC-rich zebrafish satellite DNAs by means of PRINS (Primed in situ) and multicolor FISH (Fluorescence in situ Hybridization) has confirmed this hypothesis, which therefore provided the chromosome localization of 10% of the zebrafish genome. The analysis of nucleolus organizer regions (NORs) by silver staining and by FISH with 18S rDNA has also revealed the existence of variable and inactive NORs, in addition to those on the terminal regions of the long arms of the three NOR-bearing chromosome pairs. Other multicopy genes, such as minor ribosomal genes, or multicopy repeats, such as telomere specific sequences, have now been mapped on zebrafish chromosomes. The latest advancement in zebrafish molecular cytogenetics is the chromosome mapping of single locus genes. Single-copy genes from each of the 25 genetic linkage groups are now being mapped on zebrafish chromosomes by using PAC clones.
Collapse
Affiliation(s)
- L Sola
- Department of Animal and Human Biology, University of Rome I La Sapienza, Rome, Italy.
| | | |
Collapse
|
9
|
Oliveira C, Wright JM. Molecular cytogenetic analysis of heterochromatin in the chromosomes of tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosome Res 1998; 6:205-11. [PMID: 9609664 DOI: 10.1023/a:1009211701829] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structure of the heterochromatic bands in mitotic chromosomes of the important tropical aquaculture species of tilapia, Oreochromis niloticus, was investigated by the combination of the C-banding technique, chromosomal digestion with two restriction endonucleases and fluorescence in situ hybridization (FISH) of two satellite DNAs (SATA and SATB). The tilapia chromosomes presented heterochromatic bands in the centromeres and in the short arms of almost all chromosomes that were differentially digested by the restriction endonucleases HaeIII and EcoRI. FISH of SATA showed that this satellite sequence is distributed in the centromeric region of all chromosomes of tilapia. FISH also revealed an intense hybridization signal for SATB in only one chromosome pair, but less intense signals were also present in several other pairs. The digestion of tilapia chromosomes by HaeIII and EcoRI was positively correlated with the position of SATA and SATB in chromosomes as revealed by FISH. The results obtained may be useful in future molecular and genetic studies of tilapias.
Collapse
Affiliation(s)
- C Oliveira
- Departamento de Morfologia, Instituto de Biociências, UNESP, Botucatu, São Paulo, Brazil
| | | |
Collapse
|