1
|
Cifuentes SJ, Theran-Suarez NA, Rivera-Crespo C, Velez-Roman L, Thacker B, Glass C, Domenech M. Heparan Sulfate-Collagen Surface Multilayers Support Serum-Free Microcarrier Culture of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2024; 10:5739-5751. [PMID: 39187752 DOI: 10.1021/acsbiomaterials.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Bioengineering Department, Moffitt Cancer Center, Tampa, Florida 32611, United States
| | - Natalia A Theran-Suarez
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| | - Carolina Rivera-Crespo
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Leonel Velez-Roman
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Bryan Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Charles Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
2
|
Chen YC, Chang HN, Pang JHS, Lin LP, Chen JM, Yu TY, Tsai WC. Lidocaine Inhibited Tendon Cell Proliferation and Extracellular Matrix Production by Down Regulation of Cyclin A, CDK2, Type I and Type III Collagen Expression. Int J Mol Sci 2022; 23:ijms23158787. [PMID: 35955918 PMCID: PMC9368801 DOI: 10.3390/ijms23158787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Lidocaine injection is a common treatment for tendon injuries. However, the evidence suggests that lidocaine is toxic to tendon cells. This study investigated the effects of lidocaine on cultured tendon cells, focusing on the molecular mechanisms underlying cell proliferation and extracellular matrix (ECM) production. Tendon cells cultured from rat Achilles tendons were treated with 0.5, 1.0, or 1.5 mg/mL lidocaine for 24 h. Cell proliferation was evaluated by Cell Counting Kit 8 (CCK-8) assay and bromodeoxyuridine (BrdU) assay. Cell apoptosis was assessed by Annexin V and propidium iodide (PI) stain. Cell cycle progression and cell mitosis were assessed through flow cytometry and immunofluorescence staining, respectively. The expression of cyclin E, cyclin A, cyclin-dependent kinase 2 (CDK2), p21, p27, p53, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), type I collagen, and type III collagen were examined through Western blotting, and the enzymatic activity of MMP-9 was determined through gelatin zymography. Lidocaine reduced cell proliferation and reduced G1/S transition and cell mitosis. Lidocaine did not have a significant negative effect on cell apoptosis. Lidocaine significantly inhibited cyclin A and CDK2 expression but promoted p21, p27, and p53 expression. Furthermore, the expression of MMP-2 and MMP-9 increased, whereas that of type I and type III collagen decreased. Lidocaine also increased the enzymatic activity of MMP-9. Our findings support the premise that lidocaine inhibits tendon cell proliferation by changing the expression of cell-cycle-related proteins and reduces ECM production by altering levels of MMPs and collagens.
Collapse
Affiliation(s)
- Yen-Chia Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Hsiang-Ning Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Jong-Hwei Su Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Jing-Min Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| | - Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Center of Comprehensive Sports Medicine, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Badithapuram V, Nukala SK, Thirukovela NS, Dasari G, Manchal R, Bandari S. Design, Synthesis, and Molecular Docking Studies of Some New Quinoxaline Derivatives as EGFR Targeting Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:565-575. [PMID: 35757285 PMCID: PMC9212206 DOI: 10.1134/s1068162022030220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
The synthesis of some new quinoxaline derivatives (IVa-n) and their structure determination using 1H NMR, 13C NMR and mass spectral analysis was described herein. The in vitro anti-cancer activity of the these compounds (IVa-n) revealed that the compound1-((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVd) has shown promising activity, whereas, compounds 1-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVa), 1-(tetrazolo[1,5-a]quinoxalin-4-yl)-2-((1-(m-tolyl)-1H-1,2,3-triazol-4-yl)methyl)pyrazolidine-3,5-dione (IVb), 1-((1-(3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVh) and 1-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVi) exhibited good to moderate activity against four human cancer cell lines such as HeLa, MCF-7, HEK 293T, and A549 as compared to the doxorubicin. Predominantly, the compound displayed excellent activity over HeLa, MCF-7, HEK 293T, and A549 with IC50 values of 3.20 ± 1.32, 4.19 ± 1.87, 3.59 ± 1.34, and 5.29 ± 1.34 μM, respectively. Moreover, molecular docking studies of derivatives (IVa-n) on EGFR receptor suggested that the most potent compound strongly binds to protein EGFR (pdbid:4HJO) and the energy calculations of in silico studies were also in good agreement with the obtained IC50 values. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022030220.
Collapse
Affiliation(s)
- Vinitha Badithapuram
- Department of Chemistry, Chaitanya (Deemed to be University), 506001 Warangal, Telangana, India
| | - Satheesh Kumar Nukala
- Department of Chemistry, Chaitanya (Deemed to be University), 506001 Warangal, Telangana, India
| | | | - Gouthami Dasari
- Department of Chemistry, Chaitanya (Deemed to be University), 506001 Warangal, Telangana, India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya (Deemed to be University), 506001 Warangal, Telangana, India
| | - Srinivas Bandari
- Department of Chemistry, Chaitanya (Deemed to be University), 506001 Warangal, Telangana, India
| |
Collapse
|
4
|
Amani J, Gorjizadeh N, Younesi S, Najafi M, Ashrafi AM, Irian S, Gorjizadeh N, Azizian K. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair (Amst) 2021; 102:103103. [PMID: 33812232 DOI: 10.1016/j.dnarep.2021.103103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
At the cellular level, DNA repair mechanisms are crucial in maintaining both genomic integrity and stability. DNA damage appears to be a central culprit in tumor onset and progression. Cyclin-dependent kinases (CDKs) and their regulatory partners coordinate the cell cycle progression. Aberrant CDK activity has been linked to a variety of cancers through deregulation of cell-cycle control. Besides DNA damaging agents and chromosome instability (CIN), disruptions in the levels of cell cycle regulators including cyclin-dependent kinase inhibitors (CDKIs) would result in unscheduled proliferation and cell division. The INK4 and Cip/Kip (CDK interacting protein/kinase inhibitor protein) family of CDKI proteins are involved in cell cycle regulation, transcription regulation, apoptosis, and cell migration. A thorough understanding of how these CDKIs regulate the DNA damage response through multiple signaling pathways may provide an opportunity to design efficient treatment strategies to inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nassim Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Mojtaba Najafi
- Department of Genetics, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Arash M Ashrafi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negar Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Khalil Azizian
- Department of Clinical Microbiology, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
5
|
El-Fayoumy EA, Shanab SMM, Gaballa HS, Tantawy MA, Shalaby EA. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complement Med Ther 2021; 21:51. [PMID: 33546663 PMCID: PMC7863377 DOI: 10.1186/s12906-020-03194-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background Chlorella vulgaris is a microalga potentially used for pharmaceutical, animal feed, food supplement, aquaculture and cosmetics. The current study aims to study the antioxidant and prooxidant effect of Chlorella vulgaris cultivated under various conc. of copper ions. Methods The axenic green microalgal culture of Chlorella vulgaris was subjected to copper stress conditions (0.00, 0.079, 0.158, 0.316 and 0.632 mg/L). The growth rate was measured at OD680 nm and by dry weight (DW). Moreover, the Antioxidant activity against DPPH and ABTS radical, pigments and phytochemical compounds of the crude extracts (methylene chloride: Methanol, 1:1) were evaluated. The promising Cu crude extract (0.316 mg/L) further fractionated into twenty-one fractions by silica gel column chromatography using hexane, chloroform and ethyl acetate as a mobile phase. Results The obtained results reported that nine out of these fractions exhibited more than 50% antioxidant activity and anticancer activity against Hela cancer cell lines. Based on IC50, fraction No. 7 was found to be the most effective fraction possessing a significant increase in both antioxidant and anticancer potency. Separation of active compound (s) in fraction No 7 was performed using precoated silica gel plates (TLC F254) with ethyl acetate: hexane (9:1 v/v) as mobile phase. Confirmation of active compound separation was achieved by two-dimensional TLC and visualization of the separated compound by UV lamp. The complete identification of the separated active compound was performed by UV- Vis- spectrophotometric absorption, IR, MS, H1-NMRT C13-NMR. The isolated compound ((2E,7R,11R)-3,7,11,15-Tetramethyl-2-hexadecenol) have high antioxidant activity with IC50 (10.59 μg/ml) against DPPH radical assay and comparable to the capacities of the positive controls, Butylated hydroxy toluene [BHT] (IC50 11.2 μg/ml) and Vitamin C (IC50 12.9 μg/ml). Furthermore, pure isolated compound exhibited a potent anticancer activity against Hela cell line with IC50 (4.38 μg/ml) compared to Doxorubicin (DOX) as synthetic drug (13.3 μg/ml). In addition, the interaction of the pure compound with Hela cancer cell line and gene expression were evaluated. Conclusions The authors recommend cultivation of Chlorella vulgaris in large scale under various stress conditions for use the crude extracts and semi purified fractions for making a pharmaco-economic value in Egypt and other countries.
Collapse
Affiliation(s)
- Eman A El-Fayoumy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sanaa M M Shanab
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hanan S Gaballa
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Tantawy
- Department of Hormones. Medical Research Division, National Research Centre, Dokkie, Egypt
| | - Emad A Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
6
|
MiR-204-5p promotes lipid synthesis in mammary epithelial cells by targeting SIRT1. Biochem Biophys Res Commun 2020; 533:1490-1496. [PMID: 33333715 DOI: 10.1016/j.bbrc.2020.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Understanding the molecular mechanisms of lipid synthesis in the mammary gland is crucial for regulating the level and composition of lipids in milk. This study aimed to investigate the functional and molecular mechanisms of miR-204-5p in mammary epithelial cells to provide a theoretical basis for milk lipid synthesis. METHODS Real-time quantitative PCR was performed to detect the transcriptional levels of miR-204-5p and related mRNA abundance in mammary epithelial cells. Western blotting was conducted to determine protein expression. Cell proliferation was assessed by Cell Counting Kit-8. A dual-luciferase reporter assay was conducted to verify the targeting relationship between miR-204-5p and SIRT1. siRNA and overexpression plasmids were transfected into mouse HC11 mammary epithelial cells. RESULTS The abundance of miR-204-5p was much higher in lactating mouse mammary glands than in other tissues, which indicated that miR-204-5p may be involved in regulating milk production. MiR-204-5p affected the expression of β-casein and milk lipid synthesis in HC11 mouse mammary epithelial cells but did not influence the proliferation of HC11 cells. Overexpression of miR-204-5p significantly increased the number of Oil Red O+ cells, triglyceride accumulation and the expression of markers associated with lipid synthesis, including FASN and PPARγ, whereas inhibition of miR-204-5p had the opposite effect. miR-204-5p promotes lipid synthesis by negatively regulating SIRT1. Overexpression of SIRT1 can repress the promotion of miR-204-5p on lipid synthesis. CONCLUSION Our findings showed that miR-204-5p can promote the synthesis of milk lipids in mammary epithelial cells by targeting SIRT1.
Collapse
|
7
|
Farabaugh SM, Litzenburger BC, Elangovan A, Pecar G, Walheim L, Atkinson JM, Lee AV. IGF1R constitutive activation expands luminal progenitors and influences lineage differentiation during breast tumorigenesis. Dev Biol 2020; 463:77-87. [PMID: 32376245 DOI: 10.1016/j.ydbio.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Breast tumors display tremendous heterogeneity in part due to varying molecular alterations, divergent cells of origin, and differentiation. Understanding where and how this heterogeneity develops is likely important for effective breast cancer eradication. Insulin-like growth factor (IGF) signaling is critical for normal mammary gland development and function, and has an established role in tumor development and resistance to therapy. Here we demonstrate that constitutive activation of the IGF1 receptor (IGF1R) influences lineage differentiation during mammary tumorigenesis. Transgenic IGF1R constitutive activation promotes tumors with mixed histologies, multiple cell lineages and an expanded bi-progenitor population. In these tumors, IGF1R expands the luminal-progenitor population while influencing myoepithelial differentiation. Mammary gland transplantation with IGF1R-infected mammary epithelial cells (MECs) resulted in hyperplastic, highly differentiated outgrowths and attenuated reconstitution. Restricting IGF1R constitutive activation to luminal versus myoepithelial lineage-sorted MECs resulted in ductal reconstitutions co-expressing high IGF1R levels in the opposite lineage of origin. Using in vitro models, IGF1R constitutively activated MCF10A cells showed increased mammosphere formation and CD44+/CD24-population, which was dependent upon Snail and NFκB signaling. These results suggest that IGF1R expands luminal progenitor populations while also stimulating myoepithelial cell differentiation. This ability to influence lineage differentiation may promote heterogeneous mammary tumors, and have implications for clinical treatment.
Collapse
Affiliation(s)
- Susan M Farabaugh
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Beate C Litzenburger
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ashuvinee Elangovan
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Geoffrey Pecar
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Lauren Walheim
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA.
| |
Collapse
|
8
|
Cui J, Chen G, Perry AS, Abdi S. Transient Cell-to-Cell Signaling Before Mitosis in Cultures of Human Bone Marrow-Derived Mesenchymal Stem/Stromal Cells. Stem Cells Dev 2018; 28:120-128. [PMID: 30358482 DOI: 10.1089/scd.2018.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some types of cells, if not all, that undergo signal exchanges in culture need to contact other cells for various reasons, such as cell-to-cell contact for growth inhibition. However, signal exchanges by cell-to-cell contact before proliferation have never been reported. Using time-lapse recording, we discovered the emergence of several astonishing cell-to-cell contact modes in bone marrow-derived mesenchymal stem/stromal cells (MSCs) before the cells divided. When the cells contacted with another, a huge temporary synapse-like structure formed for molecule exchanges; a cell-tissue particle was taken in by a recipient cell; two cell membranes formed infusion-like structure for a short time; and even a 20-μm long and 5-μm wide cell tail was grafted to another cell. A total of 87% of cells underwent cell-to-cell contact before dividing. After epidermal growth factor-green fluorescent protein (EGF-GFP) vectors were transfected into MSCs and the cells were cocultured with unmanipulated MSCs, the unmanipulated MSCs took in EGF-GFP particles from EGF-GFP expressed MSCs, immediately increased in mitogen genes, and then divided. These results suggest that cells which may lack signal molecules may need to obtain these molecules from other cells through various types of cell-to-cell contact, as mentioned above. Our study provided valuable information to better understand the behaviors of cell-to-cell contact and communication before mitosis.
Collapse
Affiliation(s)
- JianGuo Cui
- 1 Department of Pain Medicine, Anesthesiology, Critical Care and Pain Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guanxing Chen
- 1 Department of Pain Medicine, Anesthesiology, Critical Care and Pain Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony S Perry
- 2 Department of Pathology, Utah Valley Regional Medical Center, Proto, Utah
| | - Salahadin Abdi
- 1 Department of Pain Medicine, Anesthesiology, Critical Care and Pain Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Yu TY, Pang JHS, Wu KPH, Lin LP, Tseng WC, Tsai WC. Platelet-rich plasma increases proliferation of tendon cells by modulating Stat3 and p27 to up-regulate expression of cyclins and cyclin-dependent kinases. Cell Prolif 2015; 48:413-20. [PMID: 26009842 DOI: 10.1111/cpr.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To investigate effects of platelet-rich plasma on tendon cell proliferation and the underlying molecular mechanisms. MATERIALS AND METHODS Platelet-rich plasma was prepared manually by two-step centrifugation. Proliferation was evaluated in cultured rat tendon cells by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Cell cycle progression was assessed by flow cytometry. Messenger RNA expression of proliferating cell nuclear antigen (PCNA), cyclin E1, A2 and B1, and cyclin-dependent kinases (Cdks) 1 and 2 was assessed by real-time polymerase chain reaction. Protein expression of the above cyclins and Cdks and of signal transducer and activator of transcription (Stat) 3 and p27 was evaluated by western blotting. RESULTS Platelet-rich plasma used in the present study had concentrations of platelets, TGF-β1 and PDGF over 3-fold higher than normal whole blood. Platelet-rich plasma enhanced tendon cell proliferation (P = 0.008) by promoting G1 /S phase transition in the cell cycle, and increased expression of PCNA, cyclin E1, A2 and B1, Cdks1 and 2, and phosphorylated Stat3, while inhibiting p27 expression. CONCLUSIONS Platelet-rich plasma contains high concentrations of TGF-β1 and PDGF that increase tendon cell proliferation by modulating Stat3/p27(Kip1), which enhances expression of cyclin-Cdk complexes that promote cell cycle progression. These results provide molecular evidence for positive effects of platelet-rich plasma on tendon cell proliferation, which can be useful in clinical applications of tendon injury.
Collapse
Affiliation(s)
- T-Y Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, 333, Taiwan
| | - J-H S Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, 333, Taiwan
| | - K P-H Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - L-P Lin
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, 333, Taiwan
| | - W-C Tseng
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - W-C Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| |
Collapse
|
10
|
Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front Endocrinol (Lausanne) 2015; 6:59. [PMID: 25964777 PMCID: PMC4408912 DOI: 10.3389/fendo.2015.00059] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is fundamental for growth and survival. A large body of evidence (laboratory, epidemiological, and clinical) implicates the exploitation of this pathway in cancer. Up to 50% of breast tumors express the activated form of the type 1 insulin-like growth factor receptor (IGF1R). Breast cancers are categorized into subtypes based upon hormone and ERRB2 receptor expression and/or gene expression profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance across all breast cancer subtypes, it has specific expression and function in each. In some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is associated with recurrence and poor prognosis, suggesting different actions based upon cellular and molecular contexts. In this review, we examine IGF1R expression and function as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how these cell fate influences may alter the differentiation potential and cellular composition of breast tumors.
Collapse
Affiliation(s)
- Susan M. Farabaugh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David N. Boone
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- *Correspondence: Adrian V. Lee, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Room A412, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Hu F, Meng X, Tong Q, Liang L, Xiang R, Zhu T, Yang S. BMP-6 inhibits cell proliferation by targeting microRNA-192 in breast cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2379-90. [PMID: 24012720 DOI: 10.1016/j.bbadis.2013.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/19/2013] [Accepted: 08/28/2013] [Indexed: 01/21/2023]
Abstract
Although bone morphogenetic protein-6 (BMP-6) has been identified as a tumor suppressor associated with breast cancer differentiation and metastasis, the potential roles of BMP-6 in regulating cell cycle progression have not been fully examined. In the present study, we provide the novel finding that induction of BMP-6 in MDA-MB-231 breast cancer cells significantly inhibits cell proliferation by decreasing the number of cells in S phase of the cell cycle, resulting in inhibition of tumorigenesis in a nude mouse xenograft model. Further investigation indicated that BMP-6 up-regulates the expression of microRNA-192 (miR-192) in MDA-MB-231 cells. Elevated expression of miR-192 caused cell growth arrest, which is similar to the effect of BMP-6 induction. Importantly, depletion of endogenous miR-192 by miRNA inhibition significantly attenuated BMP-6-mediated repression of cell cycle progression. In breast cancer tissue, miR-192 expression is significantly down-regulated in tumor samples and positively correlates with the expression of BMP-6, demonstrating the inhibitory effect of BMP-6 on cell proliferation through miR-192 regulation. Additionally, using the RT(2) Profiler PCR Array, retinoblastoma 1 (RB1) was identified as a direct target of the BMP-6/miR-192 pathway in regulating cell proliferation in breast cancer. In conclusion, we have identified an important role for BMP-6/miR-192 signaling in the regulation of cell cycle progression in breast cancer. Furthermore, BMP-6/miR-192 was expressed at low levels in breast cancer specimens, indicating that this pathway might represent a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Fen Hu
- Medical College of Nankai University, Tianjin, China; College of Life Sciences, Hebei United University, Tangshan, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Bruno RD, Smith GH. Reprogramming non-mammary and cancer cells in the developing mouse mammary gland. Semin Cell Dev Biol 2012; 23:591-8. [PMID: 22430755 PMCID: PMC3381053 DOI: 10.1016/j.semcdb.2012.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the "niche" and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells, including mouse and human cancer cells, may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.
Collapse
|
13
|
Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells. Eur J Cell Biol 2011; 90:854-64. [DOI: 10.1016/j.ejcb.2011.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/30/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022] Open
|
14
|
Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals. Mol Cell 2011; 42:524-35. [PMID: 21596316 DOI: 10.1016/j.molcel.2011.04.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 02/20/2011] [Accepted: 04/16/2011] [Indexed: 12/20/2022]
Abstract
Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals.
Collapse
|
15
|
Sun Z, Shushanov S, LeRoith D, Wood TL. Decreased IGF type 1 receptor signaling in mammary epithelium during pregnancy leads to reduced proliferation, alveolar differentiation, and expression of insulin receptor substrate (IRS)-1 and IRS-2. Endocrinology 2011; 152:3233-45. [PMID: 21628386 PMCID: PMC3138223 DOI: 10.1210/en.2010-1296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IGFs and the IGF type 1 receptor (IGF-1R) are essential mediators of normal mammary gland development in mice. IGF-I and the IGF-1R have demonstrated functions in formation and proliferation of terminal end buds and in ductal outgrowth and branching during puberty. To study the functions of IGF-1R during pregnancy and lactation, we established transgenic mouse lines expressing a human dominant-negative kinase dead IGF-1R (dnhIGF-1R) under the control of the whey acidic protein promoter. We provide evidence that the IGF-1R pathway is necessary for normal epithelial proliferation and alveolar formation during pregnancy. Furthermore, we demonstrate that the whey acidic protein-dnhIGF-1R transgene causes a delay in alveolar differentiation including lipid droplet formation, lumen expansion, and β-casein protein expression. Analysis of IGF-1R signaling pathways showed a decrease in P-IGF-1R and P-Akt resulting from expression of the dnhIGF-1R. We further demonstrate that disruption of the IGF-1R decreases mammary epithelial cell expression of the signaling intermediates insulin receptor substrate (IRS)-1 and IRS-2. No alterations were observed in downstream signaling targets of prolactin and progesterone, suggesting that activation of the IGF-1R may directly regulate expression of IRS-1/2 during alveolar development and differentiation. These data show that IGF-1R signaling is necessary for normal alveolar proliferation and differentiation, in part, through induction of signaling intermediates that mediate alveolar development.
Collapse
Affiliation(s)
- Zhaoyu Sun
- Department Neurology & Neuroscience, Cancer Center H1200, New Jersey Medical School/University of Medicine and Dentistry of New Jersey, 205 South Orange Avenue, Newark, New Jersey 07101-1709, USA
| | | | | | | |
Collapse
|
16
|
Chang YM, Chi WY, Lai TY, Chen YS, Tsai FJ, Tsai CH, Kuo WW, Cheng YC, Lin CC, Huang CY. Dilong: role in peripheral nerve regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:380809. [PMID: 21799677 PMCID: PMC3136393 DOI: 10.1093/ecam/neq079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/25/2010] [Indexed: 01/18/2023]
Abstract
Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.
Collapse
Affiliation(s)
- Yung-Ming Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Latent transforming growth factor binding protein 4 (LTBP4) is downregulated in mouse and human DCIS and mammary carcinomas. Cell Oncol (Dordr) 2011; 34:419-34. [PMID: 21468687 PMCID: PMC3219867 DOI: 10.1007/s13402-011-0023-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2011] [Indexed: 12/03/2022] Open
Abstract
Background Transforming growth factor beta (TGF-ß) is able to inhibit the proliferation of epithelial cells and is involved in the carcinogenesis of mammary tumors. Three latent transforming growth factor-ß binding proteins (LTBPs) are known to modulate TGF-ß functions. Methods The current study analyses the expression profiles of LTBP4, its isoforms LTBP1 and LTBP3, and TGF-ß1, TGF-ß2, TGF-ß3, and SMAD2, SMAD3 and SMAD4 in human and murine (WAP-TNP8) DCIS compared to invasive mammary tumors. Additionally mammary malignant (MCF7, Hs578T, MDA-MB361) and non malignant cell lines (Hs578BsT) were analysed. Microarray, q-PCR, immunoblot, immunohistochemistry and immunofluorescence were used. Results In comparison to non-malignant tissues (n = 5), LTBP4 was downregulated in all human and mouse DCIS (n = 9) and invasive mammary adenocarcinomas (n = 5) that were investigated. We also found decreased expression of bone morphogenic protein 4 (BMP4) and increased expression of its inhibitor gremlin (GREM1). Treatment of the mammary tumor cell line (Hs578T) with recombinant TGF-ß1 rescued BMP4 and GREM1 expression. Conclusion We conclude that the lack of LTBP4-mediated targeting in malignant mammary tumor tissues may lead to a possible modification of TGF-ß1 and BMP bioavailability and function. Electronic supplementary material The online version of this article (doi:10.1007/s13402-011-0023-y) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Kleinberg DL, Ameri P, Singh B. Pasireotide, an IGF-I action inhibitor, prevents growth hormone and estradiol-induced mammary hyperplasia. Pituitary 2011; 14:44-52. [PMID: 20890664 DOI: 10.1007/s11102-010-0257-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mammary hyperplasia increases breast cancer risk. Tamoxifen prevents breast cancer in women with atypical hyperplasia, but has serious side effects. As estradiol action requires IGF-I, direct inhibition of IGF-I action theoretically might be an efficacious alternative to tamoxifen. After hypophysectomy and oophorectomy, 21-day-old female rats were treated with GH and E₂. After 7 days all terminal end buds (TEBs) and 75% of ducts became hyperplastic. Co-treatment with pasireotide, a somatostatin analog that blocks GH secretion and IGF-I action in the mammary gland, prevented hormone-induced hyperplasia. The number and size of TEBs and moderately or floridly hyperplastic ducts was reduced by pasireotide (P < 0.01). In contrast, the same concentration of octreotide, which has a more selective somatostatin receptor subtype binding profile, was less effective than pasireotide. Tamoxifen inhibited hyperplasia when used alone with GH + E₂, but did not add to the inhibitory effect of pasireotide when the two treatments were combined. Both pasireotide and tamoxifen acted via the IGF-I receptor signaling pathway and both were found to inhibit mammary cell proliferation and stimulate apoptosis. The number of epithelial cells expressing phosphorylated insulin receptor substrate (IRS)-1 in response to GH and E₂ was reduced by pasireotide, as was staining intensity. These results support the concept that IGF-I inhibition, in this case by pasireotide, inhibits E₂ and GH-induced mammary hyperplasia. As tamoxifen did not further increase the inhibitory effect of pasireotide, the peptide appears to be at least as effective as tamoxifen in preventing GH + E₂-induced mammary hyperplasia.
Collapse
Affiliation(s)
- David L Kleinberg
- The Bunnie Joan Sachs Laboratory and Neuroendocrine Unit, Department of Medicine (Division of Endocrinology), New York University School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
19
|
McCave EJ, Cass CAP, Burg KJL, Booth BW. The normal microenvironment directs mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:291-9. [PMID: 20824492 DOI: 10.1007/s10911-010-9190-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/23/2010] [Indexed: 11/29/2022] Open
Abstract
Normal development of the mammary gland is a multidimensional process that is controlled in part by its mammary microenvironment. The mammary microenvironment is a defined location that encompasses mammary somatic stem cells, neighboring signaling cells, the basement membrane and extracellular matrix, mammary fibroblasts as well as the intercellular signals produced and received by these cells. These dynamic signals take numerous forms including growth factors, steroids, cell-cell or cell-basement membrane physical interactions. Cellular growth and differentiation of the mammary gland throughout the developmental stages are regulated by changes in these signals and interactions. The purpose of this review is to summarize current information and research regarding the role of the mammary microenvironment during normal glandular development.
Collapse
Affiliation(s)
- Erin J McCave
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
20
|
Abstract
The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the "niche" and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.
Collapse
Affiliation(s)
- Corinne A. Boulanger
- Mammary Biology and Tumorigenesis Laboratory; National Cancer Institute; Bethesda, Maryland USA
| | - Gilbert H. Smith
- Mammary Biology and Tumorigenesis Laboratory; National Cancer Institute; Bethesda, Maryland USA
| |
Collapse
|
21
|
Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 2009; 30:51-74. [PMID: 19075184 PMCID: PMC5393153 DOI: 10.1210/er.2008-0022] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer chemoprevention by preventing actions of both estrogen and progesterone, especially in women at extremely high risk for developing breast cancer such as BRCA gene 1 or 2 mutations.
Collapse
Affiliation(s)
- David L Kleinberg
- Neuroendocrine Unit, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
22
|
Rowzee AM, Lazzarino DA, Rota L, Sun Z, Wood TL. IGF ligand and receptor regulation of mammary development. J Mammary Gland Biol Neoplasia 2008; 13:361-70. [PMID: 19020961 PMCID: PMC2665296 DOI: 10.1007/s10911-008-9102-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022] Open
Abstract
The insulin-like growth factors, IGF-I and IGF-II, have endocrine as well as autocrine-paracrine actions on tissue growth. Both IGF ligands are expressed within developing mammary tissue throughout postnatal stages with specific sites of expression in the epithelial and stromal compartments. The elucidation of circulating versus local actions and of epithelial versus stromal actions of IGFs in stimulating mammary epithelial development has been the focus of several laboratories. The recent studies addressing IGF ligand function provide support for the hypotheses that (1) the diverse sites of IGF expression may mediate different cellular outcomes, and (2) IGF-I and IGF-II are distinctly regulated and have diverse functions in mammary development. The mechanisms for IGF function likely are mediated, in part, through diverse IGF signaling receptors. The local actions of the IGF ligands and receptors as revealed through recent publications are the focus of this review.
Collapse
Affiliation(s)
- Anne M Rowzee
- Department of Neurology & Neuroscience, University Hospital Cancer Center, New Jersey Medical School, UMDNJ, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
23
|
Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:353-60. [PMID: 19034633 DOI: 10.1007/s10911-008-9103-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022] Open
Abstract
Although the pubertal surge of estrogen is the immediate stimulus to mammary development, the action of estrogen depends upon the presence of pituitary growth hormone and the ability of GH to stimulate production of IGF-I in the mammary gland. Growth hormone binds to its receptor in the mammary fat pad, after which production of IGF-I mRNA and IGF-I protein occurs. It is likely that IGF-I then works through paracrine means to stimulate formation of TEBs, which then form ducts by bifurcating or trifurcating and extending through the mammary fat pad. By the time pubertal development is complete a tree-like structure of branching ducts fills the rodent mammary fat pad. In addition to requiring IGF-I in order to act, estradiol also directly synergizes with IGF-I to enhance formation of TEBs and ductal morphogenesis. Together they increase IRS-1 phosphorylation and cell proliferation, and inhibit apoptosis. In fact, the entire process of ductal morphogenesis, in oophorectomized IGF-I(-/-) knockout female mice, can occur as a result of the combined actions of estradiol and IGF-I. IGF-I also permits progesterone action in the mammary gland. Together they have been shown to stimulate a form of ductal morphogenesis, which is anatomically different from the kind induced by IGF-I and estradiol. Although both progesterone and estradiol synergize with IGF-I by increasing IGF-I action parameters, there must be other, as yet unknown mechanisms that account for the anatomical differences in the different forms of ductal morphogenesis observed (hyperplasia in response to IGF-I plus estradiol and single layered ducts in response to IGF-I plus progesterone).
Collapse
|
24
|
Zheng JM, Zhu JM, Li LS, Liu ZH. Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT1) by inhibiting the hexosamine pathway. Br J Pharmacol 2008; 153:1456-64. [PMID: 18264122 DOI: 10.1038/bjp.2008.26] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Rhein, an anthraquinone compound isolated from rhubarb, has been proved effective in treatment of experimental diabetic nephropathy (DN). To explore the mechanism of its therapeutic effect on DN, rhein was tested for its effect on the hexosamine pathway. EXPERIMENTAL APPROACH The influence of rhein on cellular hypertrophy, fibronectin synthesis, glucose uptake, glutamine: fructose 6-phosphate aminotransferase (GFAT) activity, UDP-N-acetylglucosamine (UDP-GlcNAc) level and TGF-beta1 and p21 expression was evaluated in MCGT1 cells, a GLUT1 transgenic rat mesangial cell line. GFAT activity in normal rat mesangial cells in high glucose concentrations and in vitro was also measured. KEY RESULTS Significantly increased fibronectin synthesis, cellular hypertrophy, much higher GFAT activity and UDP-GlcNAc level and increased TGF-beta1 and p21 expression were found in MCGT1 cells cultured in normal glucose concentration. Rhein treatment decreased all these features of MCGT1 cells but did not exert a direct effect on GFAT enzymatic activity. CONCLUSIONS AND IMPLICATIONS There was over-activity of the hexosamine pathway in MCGT1 cells, which may explain the higher expression of TGF-beta1 and p21, the cellular hypertrophy and the increased expression of extracellular matrix (ECM) components in the cells. By inhibiting the increased activity the hexosamine pathway, rhein decreased TGF-beta1 and p21 expression and thus contributed to the decreased cellular hypertrophy and ECM synthesis. Inhibition of the hexosamine pathway may be one of the mechanism through which rhein exerts its therapeutic role in diabetic nephropathy.
Collapse
Affiliation(s)
- J-M Zheng
- Research Institute of Nephrology, Jingling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | | | | | | |
Collapse
|
25
|
Categorization of Mammographic Density for Breast Cancer. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Mauel S, Kruse B, Etschmann B, von der Schulenburg AG, Schaerig M, Stövesand K, Wilcken B, Sterner-Kock A. Latent transforming growth factor binding protein 4 (LTBP-4) is downregulated in human mammary adenocarcinomas in vitro and in vivo. APMIS 2007; 115:687-700. [PMID: 17550376 DOI: 10.1111/j.1600-0463.2007.apm_453.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transforming growth factor beta (TGF-ss) is able to inhibit proliferation of epithelial cells and is involved in the carcinogenesis of human mammary tumours. Three latent transforming growth factor-beta binding proteins (LTBP-1, -3 and -4) are involved in TGF-beta function. The aim of the study was to analyze the expression profiles of TGF-beta 1 and 2 and LTBP-4 in human mammary carcinoma cell lines as well as in human mammary tumours. Expression analysis was performed at the transcription and protein level under in vivo and in vitro conditions. LTBP-4 expression was quantitatively analysed in human carcinomas of the mammary gland and in healthy mammary tissues of the same patients. Downregulation of LTBP-4 in all investigated human mammary tumours compared to normal tissues could be demonstrated. Results also revealed that protein levels of TGF-beta 1 are downregulated and of TGF-beta 2 are upregulated in human mammary carcinoma cell lines compared to primary (normal) human mammary epithelial cells. LTBP-4 reduction in neoplasms leads to a possible decrease of TGF-beta 1 extracellular deposition with reduced TGF-beta 1 bioavailability. TGF-beta 2 was upregulated, which indicates a possible compensatory mechanism. This study demonstrated a possible functional role of LTBP-4 for TGF-beta bioavailability with respect to carcinogenesis of human mammary tumours in vivo and in vitro.
Collapse
Affiliation(s)
- Susanne Mauel
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Loladze AV, Stull MA, Rowzee AM, Demarco J, Lantry JH, Rosen CJ, Leroith D, Wagner KU, Hennighausen L, Wood TL. Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 2006; 147:5412-23. [PMID: 16901968 DOI: 10.1210/en.2006-0427] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Postnatal development of the mammary gland requires interactions between the epithelial and stromal compartments, which regulate actions of hormones and growth factors. IGF-I is expressed in both epithelial and stromal compartments during postnatal development of the mammary gland. However, little is known about how local expression of IGF-I in epithelium or stroma regulates mammary growth and differentiation during puberty and pregnancy-induced alveolar development. The goal of this study was to investigate the mechanisms of IGF-I actions in the postnatal mammary gland and test the hypothesis that IGF-I expressed in stromal and epithelial compartments has distinct functions. We established mouse lines with inactivation of the igf1 gene in mammary epithelium by crossing igf1/loxP mice with mouse lines expressing Cre recombinase under the control of either the mouse mammary tumor virus long-terminal repeat or the whey acidic protein gene promoter. Epithelial-specific loss of IGF-I during pubertal growth resulted in deficits in ductal branching. In contrast, heterozygous reduction of IGF-I throughout the gland decreased expression of cyclins A2 and B1 during pubertal growth and resulted in alterations in proliferation of the alveolar epithelium and milk protein levels during pregnancy-induced differentiation. Reduction in epithelial IGF-I at either of these stages had no effect on these indices. Taken together, our results support distinct roles for IGF-I expressed in epithelial and stromal compartments in mediating growth of the postnatal mammary gland.
Collapse
Affiliation(s)
- Aimee V Loladze
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem 2006; 97:261-74. [PMID: 16267837 DOI: 10.1002/jcb.20690] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In breast cancer, cyclins D1 and E and the cyclin-dependent kinase inhibitors p21 (Waf1/Cip1)and p27 (Kip1) are important in cell-cycle control and as potential oncogenes or tumor suppressor genes. They are regulated in breast cancer cells following mitogenic stimuli including activation of receptor tyrosine kinases and steroid hormone receptors, and their deregulation frequently impacts on breast cancer outcome, including response to therapy. The cyclin-dependent kinase inhibitor p16 (INK4A) also has a critical role in transformation of mammary epithelial cells. In addition to their roles in cell cycle control, some of these molecules, particularly cyclin D1, have actions that are not mediated through regulation of cyclin-dependent kinase activity but may be important for loss of proliferative control during mammary oncogenesis.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | | | | | | |
Collapse
|
29
|
Arendt LM, Rose-Hellekant TA, Sandgren EP, Schuler LA. Prolactin potentiates transforming growth factor alpha induction of mammary neoplasia in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1365-74. [PMID: 16565509 PMCID: PMC1606572 DOI: 10.2353/ajpath.2006.050861] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolactin influences mammary development and carcinogenesis through endocrine and autocrine/paracrine mechanisms. In virgin female mice, pro-lactin overexpression under control of a mammary selective nonhormonally responsive promoter, neu-related lipocalin, results in estrogen receptor alpha (ERalpha)-positive and ERalpha-negative adenocarcinomas. However, disease in vivo occurs in the context of dysregulation of multiple pathways. In this study, we investigated the ability of prolactin to modulate carcinogenesis when co-expressed with the potent oncogene transforming growth factor alpha (TGFalpha) in bitransgenic mice. Prolactin and TGFalpha cooperated to reduce dramatically the latency of mammary macrocyst development, the principal lesion type induced by TGFalpha. In combination, prolactin and TGFalpha also increased the incidence and reduced the latency of other preneoplastic lesions and increased cellular turnover in structurally normal alveoli and ducts compared with single transgenic females. Bitransgenic glands contained higher levels of phosphorylated ERK1/2 compared with single TGFalpha transgenic glands, suggesting that this kinase may be a point of signaling crosstalk. Furthermore, transgenic prolactin also reversed the decrease in ERalpha induced by neu-related lipocalin-TGFalpha. Our findings demonstrate that locally produced prolactin can strikingly potentiate the carcinogenic actions of another oncogene and modify ovarian hormone responsiveness, suggesting that prolactin signaling may be a potential therapeutic target.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
30
|
Kuns R, Kissil JL, Newsham IF, Jacks T, Gutmann DH, Sherman LS. Protein 4.1B expression is induced in mammary epithelial cells during pregnancy and regulates their proliferation. Oncogene 2005; 24:6502-15. [PMID: 16007173 DOI: 10.1038/sj.onc.1208813] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
4.1B is a member of the protein 4.1 superfamily of proteins that link transmembrane proteins to the actin cytoskeleton. The 4.1B gene localizes to chromosome 18p11.3, which undergoes loss of heterozygosity in mammary tumors. Here, we examine the expression of 4.1B in murine mammary epithelium and find that 4.1B is dramatically upregulated in mammary epithelial cells during pregnancy when there is extensive cell proliferation. In contrast, 4.1B is not expressed in virgin, lactating, or involuting mammary epithelium. To examine the consequence of 4.1B loss on mammary epithelial cell proliferation, we analysed mammary glands in 4.1B-null mice. 4.1B loss results in a significant increase in mammary epithelial cell proliferation during pregnancy, but has no effect on mammary epithelial cell proliferation, in virgin or involuting mice. Furthermore, we show that 4.1B inhibits the proliferation of mammary epithelial cell lines by inducing a G1 cell cycle arrest, characterized by decreased cyclin A expression and reduced Rb phosphorylation, and accompanied by reduced erbB2 phosphorylation. This cell cycle arrest does not involve alterations in the activities of MAPK, JNK, or Akt. Collectively, our findings demonstrate that 4.1B regulates mammary epithelial cell proliferation during pregnancy and suggest that its loss may influence mammary carcinoma pathogenesis in multiparous women.
Collapse
Affiliation(s)
- Robin Kuns
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ruan W, Monaco ME, Kleinberg DL. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology 2005; 146:1170-8. [PMID: 15604210 DOI: 10.1210/en.2004-1360] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progestins have been implicated in breast cancer development, yet a role for progesterone (Pg) in ductal morphogenesis (DM) has not been established. To determine whether Pg could cause DM, we compared relative effects of Pg, estradiol (E2) and IGF-I on anatomical and molecular biological parameters of IGF-I-related DM in oophorectomized female IGF-I(-/-) mice. Pg had little independent effect on mammary development, but together with IGF-I, in the absence of E2, Pg stimulated an extensive network of branching ducts, occupying 92% of the gland vs. 28.3% with IGF-I alone, resembling pubertal development (P < 0.002). Its major effect was on enhancing duct length and branching (P < 0.002). Additionally, Pg enhanced phosphorylation of IRS-1, increased cell division, and increased the antiapoptotic effect of IGF-I. Pg action was inhibited by RU486 (P < 0.01). E2 also stimulated DM by enhancing IGF-I action but had a greater effect on terminal end bud formation and side branching (P < 0.002). In contrast to previous findings, long-term exposure to E2 alone, without IGF-I, caused formation of ducts and side branches, a novel finding. Both IGF-I and E2 were found necessary for Pg-induced alveolar development. In conclusion, Pg, through Pg receptor can enhance IGF-I action in DM, and E2 acts through a similar mechanism; E2 alone caused formation of ducts and side branches; there were differences in the actions of Pg and E2, the former largely affecting duct formation and extension, and the latter side branching; and both IGF-I and E2 were necessary for Pg to form mature alveoli.
Collapse
Affiliation(s)
- Weifeng Ruan
- Neuroendocrine Unit, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | |
Collapse
|