1
|
Stępniak J, Karbownik-Lewińska M. Protective Effects of Melatonin against Carcinogen-Induced Oxidative Damage in the Thyroid. Cancers (Basel) 2024; 16:1646. [PMID: 38730600 PMCID: PMC11083294 DOI: 10.3390/cancers16091646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin, primarily synthesized in the pineal gland, plays a crucial role in regulating circadian rhythms and possesses significant antioxidative properties. By neutralizing free radicals and reducing oxidative stress, melatonin emerges as a promising agent for the prevention and therapy of many different disorders, including cancer. This paper reviews the relationship between the thyroid gland and melatonin, presenting experimental evidence on the protective effects of this indoleamine against oxidative damage to macromolecules in thyroid tissue caused by documented carcinogens (as classified by the International Agency for Research on Cancer, IARC) or caused by potential carcinogens. Furthermore, the possible influence on cancer therapy in humans and the overall well-being of cancer patients are discussed. The article highlights melatonin's essential role in maintaining thyroid health and its contribution to management strategies in patients with thyroid cancer and other thyroid diseases.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
- Polish Mother’s Memorial Hospital-Research Institute, Rzgowska St. 281/289, 93-338 Lodz, Poland
| |
Collapse
|
2
|
Gładysz AK, Stępniak J, Karbownik-Lewińska M. Exogenous Melatonin Protects against Oxidative Damage to Membrane Lipids Caused by Some Sodium/Iodide Symporter Inhibitors in the Thyroid. Antioxidants (Basel) 2023; 12:1688. [PMID: 37759991 PMCID: PMC10525497 DOI: 10.3390/antiox12091688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The thyroid gland is the primary site of sodium/iodide symporter (NIS), an intrinsic plasma membrane protein responsible for the active uptake of iodine, which is indispensable for thyroid hormone synthesis. Since exposure of the thyroid to NIS inhibitors can potentially have harmful effects on the entire organism, it is important to investigate the potential protective effects of known antioxidants, such as melatonin and indole-3-propionic acid (IPA), against pro-oxidative action of classic NIS inhibitors. The study aimed to check if and to what extent melatonin and IPA interact with some confirmed NIS inhibitors regarding their effects on oxidative damage to membrane lipids in the thyroid. For comparison with the thyroid gland, in which NIS is typically present, the liver tissue-not possessing NIS-was applied in the present study. Thyroid and liver homogenates were incubated in the presence of tested NIS inhibitors (i.e., NaClO3, NH4SCN, KSeCN, KNO3, NaF, KClO4, and BPA) in different ranges of concentrations with/without melatonin (5 mM) or IPA (5 mM). The malondialdehyde+4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. NaClO3 increased LPO in the thyroid and in the liver, but these pro-oxidative effects were not prevented by either melatonin or IPA. Instead, pro-oxidative effects of NH4SCN observed in both tissues were prevented by both indole substances. KSeCN and NaF increased LPO only in the thyroid, and these pro-oxidative effects were prevented by melatonin and IPA. KNO3, KClO4, and BPA did not increase LPO, which can be due to their low concentrations resulting from restricted solubility. In conclusion, as melatonin prevented oxidative damage to membrane lipids in the thyroid caused by some sodium/iodide symporter inhibitors, this indoleamine shoud be considered as a potential protective agent when produced appropriately in living organisms but also as an exogenous substance recommended to individuals overexposed to NIS inhibitors.
Collapse
Affiliation(s)
- Aleksandra K. Gładysz
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (A.K.G.); (J.S.)
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (A.K.G.); (J.S.)
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (A.K.G.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
3
|
Protection of Vitamin C on Oxidative Damage Caused by Long-Term Excess Iodine Exposure in Wistar Rats. Nutrients 2022; 14:nu14245245. [PMID: 36558407 PMCID: PMC9786336 DOI: 10.3390/nu14245245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Vitamin C was reported to be able to protect against oxidative damage due to its reducibility. 120 Wistar rats were randomly divided into 4 × 2 groups, including normal iodine (NI), high iodine (HI), low vitamin C (HI + LC), and high vitamin C (HI + HC); potassium iodide (KI) and potassium iodate (KIO3) were commonly used as additives for iodized salt, so every group was also divided into KI and KIO3 groups. After 6 months' feed, the activities of antioxidant enzymes and Lipid Peroxide (MDA) content in serum, liver, kidney, brain, thyroid and lens were determined. In serum, for males, long-term excess iodine intake caused oxidative damage; in the liver, male rats in the HI + LC group had the highest MDA content, which showed that low-dose vitamin C might promote oxidative damage; in kidneys, the MDA content in the HI and HI + LC groups of females was higher; in the brain, high-dose vitamin C could increase the activity of superoxide dismutase (SOD), which was decreased by high iodine intake, and it also decreased MDA content; in the thyroid, for KIO3, the activity of SOD in the HI group was lower than NI and HI + LC; in the lens, the MDA content in females was lower than males. Long-term excess iodine exposure caused oxidative damage and showed sex difference, and vitamin C had a protective effect on it, especially for high-dose vitamin C.
Collapse
|
4
|
Stępniak J, Krawczyk-Lipiec J, Lewiński A, Karbownik-Lewińska M. Sorafenib versus Lenvatinib Causes Stronger Oxidative Damage to Membrane Lipids in Noncancerous Tissues of the Thyroid, Liver, and Kidney: Effective Protection by Melatonin and Indole-3-Propionic Acid. Biomedicines 2022; 10:biomedicines10112890. [PMID: 36428458 PMCID: PMC9687109 DOI: 10.3390/biomedicines10112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sorafenib and lenvatinib are multi-targeted tyrosine kinase inhibitors which are currently approved to treat advanced hepatocellular carcinoma, renal cell carcinoma and radioiodine-refractory differentiated thyroid carcinoma. However this treatment is often limited due to common adverse events which may occur via oxidative stress. The study aims to compare sorafenib- and lenvatinib-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) in homogenates of porcine noncancerous tissues of the thyroid, the liver, and the kidney and to check if it can be prevented by antioxidants melatonin and indole-3-propionic acid (IPA). Homogenates of individual tissues were incubated in the presence of sorafenib or lenvatinib (1 mM, 100 µM, 10 µM, 1 µM, 100 nM, 10 nM, 1 nM, 100 pM) together with/without melatonin (5.0 mM) or IPA (5.0 mM). The concentration of malondialdehyde + 4-hydroxyalkenals, as the LPO index, was measured spectrophotometrically. The incubation of tissue homogenates with sorafenib resulted in a concentration-dependent increase in LPO (statistically significant for concentrations of 1mM and 100 µM in the thyroid and the liver, and of 1 mM, 100 µM, and 10 µM in the kidney). The incubation of thyroid homogenates with lenvatinib did not change LPO level. In case of the liver and the kidney, lenvatinib increased LPO but only in its highest concentration of 1 mM. Melatonin and IPA reduced completely (to the level of control) sorafenib- and lenvatinib-induced LPO in all examined tissues regardless of the drug concentration. In conclusion, sorafenib comparing to lenvatinib is a stronger damaging agent of membrane lipids in noncancerous tissues of the thyroid, the liver, and the kidney. The antioxidants melatonin and IPA can be considered to be used in co-treatment with sorafenib and lenvatinib to prevent their undesirable toxicity occurring via oxidative stress.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Joanna Krawczyk-Lipiec
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
5
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
6
|
Stępniak J, Rynkowska A, Karbownik-Lewińska M. Membrane Lipids in the Thyroid Comparing to Those in Non-Endocrine Tissues Are Less Sensitive to Pro-Oxidative Effects of Fenton Reaction Substrates. Front Mol Biosci 2022; 9:901062. [PMID: 35720119 PMCID: PMC9203968 DOI: 10.3389/fmolb.2022.901062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential microelement for the proper functioning of many organs, among others it is required for thyroid hormone synthesis. However, its overload contributes to the increased formation of reactive oxygen species via Fenton chemistry (Fe2++H2O2→Fe3++˙OH + OH−), and it is potentially toxic. Individual organs/tissues are affected differently by excess iron. The excessive absorption of iron with subsequent deposition in various organs is associated with diseases such as hemochromatosis. Such an iron deposition also occurs in the thyroid gland where it can disturb thyroid hormone synthesis. In turn, melatonin is an effective antioxidant, which protects against oxidative damage. This study aims to check if lipid peroxidation resulting from oxidative damage to membrane lipids, is caused by Fenton reaction substrates, and if protective effects of melatonin differ between the thyroid and various non-endocrine porcine tissues (liver, kidney, brain cortex, spleen, and small intestine). To mimic the conditions of iron overload, Fe2+ was used in extremely high concentrations. Homogenates of individual tissues were incubated together with Fenton reaction substrates, i.e., FeSO4 (9.375, 18.75, 37.5, 75, 150, 300, 600, 1,200, 1,800, 2,100, 2,400, 3,000, 3,600, 4,200, and 4,800 µM)+H2O2 (5 mM), either without or with melatonin (5 mM). The concentration of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA), as the LPO index, was evaluated by a spectrophotometrical method. Fenton reaction substrates increased concentrations of LPO products in all chosen tissues. However, in the thyroid, compared to non-endocrine tissues, the damaging effect was generally weaker, it was not observed for the two lowest concentrations of iron, and the LPO peak occurred with higher concentrations of iron. Melatonin reduced experimentally induced LPO in all examined tissues (without differences between them), and these protective effects did not depend on iron concentration. In conclusion, membrane lipids in the thyroid compared to those in non-endocrine tissues are less sensitive to pro-oxidative effects of Fenton reaction substrates, without differences regarding protective effects of melatonin.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Rynkowska
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital—Research Institute, Lodz, Poland
- *Correspondence: Małgorzata Karbownik-Lewińska, ,
| |
Collapse
|
7
|
Rynkowska A, Stępniak J, Karbownik-Lewińska M. Melatonin and Indole-3-Propionic Acid Reduce Oxidative Damage to Membrane Lipids Induced by High Iron Concentrations in Porcine Skin. MEMBRANES 2021; 11:membranes11080571. [PMID: 34436334 PMCID: PMC8400501 DOI: 10.3390/membranes11080571] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022]
Abstract
Iron excess in tissues results in increased oxidative damage. Among different tissues, the skin can particularly be severely damaged by oxidative stress, as it is exposed not only to endogenous but also directly to exogenous pro-oxidants. The skin is especially vulnerable to harmful oxidative stress. Melatonin and indole-3-propionic acid (IPA), two indole substances, are efficient antioxidants. This study aims to evaluate the potential protective effects of melatonin and IPA against oxidative damage to membrane lipids (lipid peroxidation (LPO)), induced in porcine skin homogenates by the Fenton reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH−) when iron is used in extremely high concentrations. Skin homogenates were incubated in the presence of FeSO4 (2400, 1200, 600, 300, 150 and 75 µM) + H2O2 (5 mM) with/without melatonin or IPA. LPO level (MDA + 4-HDA/mg protein) was measured spectrophotometrically. Melatonin, in its highest used concentration (5.0 mM), prevented FeSO4 (1200 mM)-induced LPO, whereas it was effective in concentrations as low as 2.5 mM against all lower iron concentrations. IPA was protective in concentrations as low as 2.5 mM independently of FeSO4 concentration. In conclusion, melatonin and IPA effectively protect against oxidative damage to membrane lipids induced by high concentrations of iron in porcine skin; therefore, both can be considered pharmacological agents in the case of disorders associated with excessive iron accumulation in the skin.
Collapse
Affiliation(s)
- Aleksandra Rynkowska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Łódź, Poland; (A.R.); (J.S.)
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Łódź, Poland; (A.R.); (J.S.)
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Łódź, Poland; (A.R.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Łódź, Poland
- Correspondence: or ; Tel.: +48-42-272-5249
| |
Collapse
|
8
|
Iwan P, Stepniak J, Karbownik-Lewinska M. Pro-Oxidative Effect of KIO 3 and Protective Effect of Melatonin in the Thyroid-Comparison to Other Tissues. Life (Basel) 2021; 11:life11060592. [PMID: 34205777 PMCID: PMC8234753 DOI: 10.3390/life11060592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
Not only iodine deficiency, but also its excess may contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in the salt iodization program, can increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin is an effective antioxidant, which protects against KIO3-induced LPO in the thyroid. This study aimed to compare the protective effects of melatonin, used in the highest achievable in vitro concentration, against KIO3-induced oxidative damage to membrane lipids in various porcine tissues (thyroid, ovary, liver, kidney, brain, spleen, and small intestine). Homogenates were incubated in the presence of KIO3 (20; 15; 10; 7.5; 5.0; 0.0 mM) without/with melatonin (5 mM). The malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased the LPO in all examined tissues; in the thyroid, the damaging effect of KIO3 (10; and 7.5 mM) was lower than in other tissues and was not observed for the lowest concentration of 5 mM. Melatonin reduced LPO induced by KIO3 (10, 7.5, and 5 mM) in all tissues, and in the thyroid it was also protective against as high a concentration of KIO3 as 15 mM; the LPO level resulting from KIO3 + melatonin treatment was lower in the thyroid than in other tissues. In conclusion, the thyroid is less sensitive tothe pro-oxidative effects of KIO3 compared to other tissues. The strongest protective effect of melatonin was observed in the thyroid, but beneficial effects were significant also in other tissues. Melatonin should be considered to avoid the potential damaging effects of iodine compounds applied in iodine prophylaxis.
Collapse
Affiliation(s)
- Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Jan Stepniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
9
|
Iwan P, Stepniak J, Karbownik-Lewinska M. Cumulative Protective Effect of Melatonin and Indole-3-Propionic Acid against KIO 3-Induced Lipid Peroxidation in Porcine Thyroid. TOXICS 2021; 9:toxics9050089. [PMID: 33919052 PMCID: PMC8143077 DOI: 10.3390/toxics9050089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Iodine deficiency is the main environmental factor leading to thyroid cancer. At the same time iodine excess may also contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in salt iodization program, may increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin and indole-3-propionic acid (IPA) are effective antioxidative indoles, each of which protects against KIO3-induced LPO in the thyroid. The study aims to check if melatonin used together with IPA (in their highest achievable in vitro concentrations) reveals stronger protective effects against KIO3-induced LPO in porcine thyroid homogenates than each of these antioxidants used separately. Homogenates were incubated in the presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25; 0.0 mM) without/with melatonin (5 mM) or without/with IPA (10 mM) or without/with melatonin + IPA, and then, to further clarify the narrow range of KIO3 concentrations, against which melatonin + IPA reveal cumulative protective effects, the following KIO3 concentrations were used: 20; 18.75; 17.5; 16.25; 15; 13.75; 12.5; 11.25; 10; 8.75; 7.5; 0.0 mM. Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. Protective effects of melatonin + IPA were stronger than those revealed by each antioxidant used separately, but only when LPO was induced by KIO3 in concentrations from 18.75 mM to 8.75 mM, corresponding to physiological iodine concentration in the thyroid. In conclusion, melatonin and indole-3-propionic acid exert cumulative protective effects against oxidative damage caused by KIO3, when this prooxidant is used in concentrations close to physiological iodine concentrations in the thyroid. Therefore, the simultaneous administration of these two indoles should be considered to prevent more effectively oxidative damage (and thereby thyroid cancer formation) caused by iodine compounds applied in iodine prophylaxis.
Collapse
Affiliation(s)
- Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Jan Stepniak
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, 7/9 Zeligowski St., 90-752 Lodz, Poland; (P.I.); (J.S.)
- Polish Mother’s Memorial Hospital—Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
10
|
Melatonin and vitamin E alleviate homocysteine-induced oxidative injury and apoptosis in endothelial cells. Mol Biol Rep 2020; 47:5285-5293. [PMID: 32592115 DOI: 10.1007/s11033-020-05607-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/20/2020] [Indexed: 12/29/2022]
Abstract
A relationship exists between hyperhomocysteinemia and cardiovascular diseases, although the underlying mechanisms are still incompletely defined. One possibility involves a homocysteine (Hcy)-induced increased oxidative stress. Melatonin (Mel) and vitamin E (vitE) are important anti-oxidants. The main purpose of this study was (1) to compare the effect of treatments with Mel, vitE or both, on Hcy-induced apoptosis in human umbilical vein endothelial cells (HUVECs), and (2) to investigate the underlying mechanisms. Cell proliferation assay was carried out by Water Soluble Tetrazolium-1 (WST-1) assay kit. Apoptotic index was calculated by TUNEL Assay. Anti-oxidant parameters were studied by measurement of reactive oxygen species (ROS) and lipid peroxidation (LPO) levels. mRNA and protein expression levels of apoptotic and anti-apoptotic genes and proteins were studied by quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting experiments respectively. The results showed that treatments with Mel, vitE or Mel + vitE suppressed Hcy-induced cell death, with a higher efficiency for the Mel and Mel + vitE treatments. Our results suggests that the mechanisms by which these anti-oxidants protected endothelial cells include the decrease in ROS and LPO levels, an increase in cell migration, the downregulation of pro-apoptotic proteins Cas 3, Cas 9, Cyt C and Bax and the upregulation of anti-apoptotic protein Bcl 2. Collectively, these results revealed the protective role of vitE and Mel against Hcy-induced cell apoptosis, which may add insight into therapeutic approaches to Hcy-induced damages.
Collapse
|