1
|
Chen M, Shao H, Wang L, Ma J, Chen J, Li J, Zhong J, Zhu B, Bi B, Chen K, Wang J, Gong L. Aberrant individual large-scale functional network connectivity and topology in chronic insomnia disorder with and without depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111158. [PMID: 39368537 DOI: 10.1016/j.pnpbp.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Insomnia is increasingly prevalent with significant associations with depression. Delineating specific neural circuits for chronic insomnia disorder (CID) with and without depressive symptoms is fundamental to develop precision diagnosis and treatment. In this study, we examine static, dynamic and network topology changes of individual large-scale functional network for CID with (CID-D) and without depression to reveal their specific neural underpinnings. Seventeen individual-specific functional brain networks are obtained using a regularized nonnegative matrix factorization technique. Disorders-shared and -specific differences in static and dynamic large-scale functional network connectivities within or between the cognitive control network, dorsal attention network, visual network, limbic network, and default mode network are found for CID and CID-D. Additionally, CID and CID-D groups showed compromised network topological architecture including reduced small-world properties, clustering coefficients and modularity indicating decreased network efficiency and impaired functional segregation. Moreover, the altered neuroimaging indices show significant associations with clinical manifestations and could serve as effective neuromarkers to distinguish among healthy controls, CID and CID-D. Taken together, these findings provide novel insights into the neural basis of CID and CID-D, which may facilitate developing new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meiling Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Heng Shao
- Department of Geriatrics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Libo Wang
- The Second People's Hospital of Yuxi, the Affiliated Hospital of Kunming University of Science and Technology, Yuxi, China
| | - Jianing Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Junying Li
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Jingmei Zhong
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Baosheng Zhu
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Bin Bi
- Department of Clinical Psychology, the Second People's Hospital of Guizhou Province, Guiyang, China..
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China.
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China.
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
2
|
Hildebrand L, Huskey A, Dailey N, Jankowski S, Henderson-Arredondo K, Trapani C, Patel SI, Chen AYC, Chou YH, Killgore WDS. Transcranial Magnetic Stimulation of the Default Mode Network to Improve Sleep in Individuals With Insomnia Symptoms: Protocol for a Double-Blind Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e51212. [PMID: 38277210 PMCID: PMC10858423 DOI: 10.2196/51212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Cortical hyperarousal and ruminative thinking are common aspects of insomnia that have been linked with greater connectivity in the default mode network (DMN). Therefore, disrupting network activity within the DMN may reduce cortical and cognitive hyperarousal and facilitate better sleep. OBJECTIVE This trial aims to establish a novel, noninvasive method for treating insomnia through disruption of the DMN with repetitive transcranial magnetic stimulation, specifically with continuous theta burst stimulation (cTBS). This double-blind, pilot randomized controlled trial will assess the efficacy of repetitive transcranial magnetic stimulation as a novel, nonpharmacological approach to improve sleep through disruption of the DMN prior to sleep onset for individuals with insomnia. Primary outcome measures will include assessing changes in DMN functional connectivity before and after stimulation. METHODS A total of 20 participants between the ages of 18 to 50 years with reported sleep disturbances will be recruited as a part of the study. Participants will then conduct an in-person screening and follow-on enrollment visit. Eligible participants then conduct at-home actigraphic collection until their first in-residence overnight study visit. In a double-blind, counterbalanced, crossover study design, participants will receive a 40-second stimulation to the left inferior parietal lobule of the DMN during 2 separate overnight in-residence visits. Participants are randomized to the order in which they receive the active stimulation and sham stimulation. Study participants will undergo a prestimulation functional magnetic resonance imaging scan and a poststimulation functional magnetic resonance imaging scan prior to sleep for each overnight study visit. Sleep outcomes will be measured using clinical polysomnography. After their first in-residence study visit, participants conduct another at-home actigraphic collection before returning for their second in-residence overnight study visit. RESULTS Our study was funded in September 2020 by the Department of Defense (W81XWH2010173). We completed the enrollment of our target study population in the October 2022 and are currently working on neuroimaging processing and analysis. We aim to publish the results of our study by 2024. Primary neuroimaging outcome measures will be tested using independent components analysis, seed-to-voxel analyses, and region of interest to region of interest analyses. A repeated measures analysis of covariance (ANCOVA) will be used to assess the effects of active and sham stimulation on sleep variables. Additionally, we will correlate changes in functional connectivity to polysomnography-graded sleep. CONCLUSIONS The presently proposed cTBS protocol is aimed at establishing the initial research outcomes of the effects of a single burst of cTBS on disrupting the network connectivity of the DMN to improve sleep. If effective, future work could determine the most effective stimulation sites and administration schedules to optimize this potential intervention for sleep problems. TRIAL REGISTRATION ClinicalTrials.gov NCT04953559; https://clinicaltrials.gov/ct2/show/NCT04953559. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51212.
Collapse
Affiliation(s)
- Lindsey Hildebrand
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Alisa Huskey
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Natalie Dailey
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Samantha Jankowski
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | | | | | - Salma Imran Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | | | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
3
|
Yoon L, Keenan KE, Hipwell AE, Forbes EE, Guyer AE. Hooked on a thought: Associations between rumination and neural responses to social rejection in adolescent girls. Dev Cogn Neurosci 2023; 64:101320. [PMID: 37922608 PMCID: PMC10641579 DOI: 10.1016/j.dcn.2023.101320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Rumination is a significant risk factor for psychopathology in adolescent girls and is associated with heightened and prolonged physiological arousal following social rejection. However, no study has examined how rumination relates to neural responses to social rejection in adolescent girls; thus, the current study aimed to address this gap. Adolescent girls (N = 116; ages 16.95-19.09) self-reported on their rumination tendency and completed a social evaluation fMRI task where they received fictitious feedback (acceptance, rejection) from peers they liked or disliked. Rejection-related neural activity and subgenual anterior cingulate cortex (sgACC) connectivity were regressed on rumination, controlling for rejection sensitivity and depressive symptoms. Rumination was associated with distinctive neural responses following rejection from liked peers including increased neural activity in the precuneus, inferior parietal gyrus, dorsolateral prefrontal cortex, and supplementary motor area (SMA) and reduced sgACC connectivity with multiple regions including medial prefrontal cortex, precuneus and ventrolateral prefrontal cortex. Greater precuneus and SMA activity mediated the effect of rumination on slower response time to report emotional state after receiving rejection from liked peers. These findings provide clues for distinctive cognitive processes (e.g., mentalizing, conflict processing, memory encoding) following the receipt of rejection in girls with high levels of rumination.
Collapse
Affiliation(s)
- Leehyun Yoon
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Kate E Keenan
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda E Guyer
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Human Ecology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Cáceda R, Kim DJ, Carbajal JM, Hou W. The Experience of Pain is Strongly Associated With Poor Sleep Quality and Increased Risk for Suicide. Arch Suicide Res 2022; 26:1572-1586. [PMID: 34126041 DOI: 10.1080/13811118.2021.1939208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Effective suicide prevention is hindered by a limited understanding of the neurobiology leading to suicide. We aimed to examine the association between changes in the experience of pain and disturbances in sleep quantity and quality in patients with elevated risk for suicide. METHODS Three groups of adult depressed individuals, including patients following a recent suicide attempt (n = 79), patients experiencing current suicidal ideation (n = 131), and patients experiencing depression but no suicidal ideation or behavior in at least 6 months (n = 51), were examined in a case-control study for sleep quantity and quality, physical and psychological pain, pressure pain threshold, suicidal ideation, and recent suicidal behavior. RESULTS Sleep quality, physical and psychological pain were positively associated with suicidal ideation severity. In both cases in which sleep quality was added to a model with either physical or psychological pain, physical or psychological pain became more significantly associated with suicidal ideation severity. Pressure pain threshold was elevated in patients suffering from any type of insomnia. There was no significant association between pressure pain threshold and suicidal ideation severity. CONCLUSIONS The impact of these findings lies in the identification of both psychological and physical pain, and sleep quality as potential biological mechanisms underlying suicidal risk. HIGHLIGHTSWe assessed the association between pain and sleep quality in suicidal patients.Sleep quality, physical and psychological pain were associated with suicide risk.Pain perception may mediate the progression to suicidal behavior.
Collapse
|
5
|
Li X, Li Z, Zou Z, Wu X, Gao H, Wang C, Zhou J, Qi F, Zhang M, He J, Qi X, Yan F, Dou S, Zhang H, Tong L, Li Y. Real-Time fMRI Neurofeedback Training Changes Brain Degree Centrality and Improves Sleep in Chronic Insomnia Disorder: A Resting-State fMRI Study. Front Mol Neurosci 2022; 15:825286. [PMID: 35283729 PMCID: PMC8904428 DOI: 10.3389/fnmol.2022.825286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChronic insomnia disorder (CID) is considered a major public health problem worldwide. Therefore, innovative and effective technical methods for studying the pathogenesis and clinical comprehensive treatment of CID are urgently needed.MethodsReal-time fMRI neurofeedback (rtfMRI-NF), a new intervention, was used to train 28 patients with CID to regulate their amygdala activity for three sessions in 6 weeks. Resting-state fMRI data were collected before and after training. Then, voxel-based degree centrality (DC) method was used to explore the effect of rtfMRI-NF training. For regions with altered DC, we determined the specific connections to other regions that most strongly contributed to altered functional networks based on DC. Furthermore, the relationships between the DC value of the altered regions and changes in clinical variables were determined.ResultsPatients with CID showed increased DC in the right postcentral gyrus, Rolandic operculum, insula, and superior parietal gyrus and decreased DC in the right supramarginal gyrus, inferior parietal gyrus, angular gyrus, middle occipital gyrus, and middle temporal gyrus. Seed-based functional connectivity analyses based on the altered DC regions showed more details about the altered functional networks. Clinical scores in Pittsburgh sleep quality index, insomnia severity index (ISI), Beck depression inventory, and Hamilton anxiety scale decreased. Furthermore, a remarkable positive correlation was found between the changed ISI score and DC values of the right insula.ConclusionsThis study confirmed that amygdala-based rtfMRI-NF training altered the intrinsic functional hubs, which reshaped the abnormal functional connections caused by insomnia and improved the sleep of patients with CID. These findings contribute to our understanding of the neurobiological mechanism of rtfMRI-NF in insomnia treatment. However, additional double-blinded controlled clinical trials with larger sample sizes need to be conducted to confirm the effect of rtfMRI-NF from this initial study.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolin Wu
- Department of Nuclear Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Caiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhou
- Health Management Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Qi
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya He
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Qi
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengshan Yan
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Shewei Dou
- Department of Radiology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongju Zhang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
- *Correspondence: Li Tong,
| | - Yongli Li
- Health Management Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Yongli Li,
| |
Collapse
|
6
|
Jerath R, Beveridge C. Harnessing the Spatial Foundation of Mind in Breaking Vicious Cycles in Anxiety, Insomnia, and Depression: The Future of Virtual Reality Therapy Applications. Front Psychiatry 2021; 12:645289. [PMID: 34305666 PMCID: PMC8295564 DOI: 10.3389/fpsyt.2021.645289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mental Illnesses, particularly anxiety, insomnia, and depression often involve vicious cycles which are self-perpetuating and can trap one into a more chronic state. For example in the case of insomnia, sympathetic overactivity, intrusive thoughts, and emotional instability due to sleep loss can perpetuate further sleep loss the next night and so on. In this article, we put forward a perspective on breaking these vicious cycles based on preeminent theories in global and spatial cognition, that the foundation of the conscious mind is a spatial coordinate system. Based on this we discuss the potential and future of virtual reality therapeutic applications which utilize massive virtual spaces along with biofeedback designed to help break perpetual cycles in depression, anxiety, and insomnia. "Massive spaces" are those which are truly expansive such as when looking to the clear night sky. These virtual realities may take the form of a night sky, fantastical cosmic scenes, or other scenes such as mountain tops. We also hope to inspire research into such a spatial foundation of mind, use of perceived massive spaces for therapy, and the integration of biofeedback into virtual therapies.
Collapse
Affiliation(s)
- Ravinder Jerath
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Connor Beveridge
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| |
Collapse
|
7
|
Makovac E, Fagioli S, Rae CL, Critchley HD, Ottaviani C. Can't get it off my brain: Meta-analysis of neuroimaging studies on perseverative cognition. Psychiatry Res Neuroimaging 2020; 295:111020. [PMID: 31790922 DOI: 10.1016/j.pscychresns.2019.111020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Perseverative cognition (i.e. rumination and worry) describes intrusive, uncontrollable, repetitive thoughts. These negative affective experiences are accompanied by physiological arousal, as if the individual were facing an external stressor. Perseverative cognition is a transdiagnostic symptom, yet studies of neural mechanisms are largely restricted to specific clinical populations (e.g. patients with major depression). The present study applied activation likelihood estimation (ALE) meta-analyses to 43 functional neuroimaging studies of perseverative cognition to elucidate the neurobiological substrates across individuals with and without psychopathological conditions. Task-related and resting state functional connectivity studies were examined in separate meta-analyses. Across task-based studies, perseverative cognition engaged medial frontal gyrus, cingulate gyrus, insula, and posterior cingulate cortex. Resting state functional connectivity studies similarly implicated posterior cingulate cortex together with thalamus and anterior cingulate cortex (ACC), yet the involvement of ACC distinguished between perseverative cognition in healthy controls (HC) and clinical groups. Perseverative cognition is accompanied by the engagement of prefrontal, insula and cingulate regions, whose interaction may support the characteristic conjunction of self-referential and affective processing with (aberrant) cognitive control and embodied (autonomic) arousal. Within this context, ACC engagement appears critical for the pathological expression of rumination and worry.
Collapse
Affiliation(s)
- Elena Makovac
- Centre for Neuroimaging Science, Kings College London, London, UK.
| | - Sabrina Fagioli
- Department of Education, University of Roma Tre, Rome, Italy; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Charlotte L Rae
- School of Psychology, University of Sussex, Falmer, UK; Sackler Centre for Consciousness Science, University of Sussex, Falmer, UK
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, UK; Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK
| | - Cristina Ottaviani
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
|