1
|
Cathles L, Fjeldskar W, Lenardic A, Romanowicz B, Seales J, Richards M. Influence of the asthenosphere on earth dynamics and evolution. Sci Rep 2023; 13:13367. [PMID: 37591899 PMCID: PMC10435468 DOI: 10.1038/s41598-023-39973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The existence of a thin, weak asthenospheric layer beneath Earth's lithospheric plates is consistent with existing geological and geophysical constraints, including Pleistocene glacio-isostatic adjustment, modeling of gravity anomalies, studies of seismic anisotropy, and post-seismic rebound. Mantle convection models suggest that a pronounced weak zone beneath the upper thermal boundary layer (lithosphere) may be essential to the plate tectonic style of convection found on Earth. The asthenosphere is likely related to partial melting and the presence of water in the sub-lithospheric mantle, further implying that the long-term evolution of the Earth may be controlled by thermal regulation and volatile recycling that maintain a geotherm that approaches the wet mantle solidus at asthenospheric depths.
Collapse
Affiliation(s)
- Lawrence Cathles
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, USA
| | | | | | - Barbara Romanowicz
- Department of Earth and Planetary Science, University of California, Berkeley, USA
| | - Johnny Seales
- Department of Earth Science, Rice University, Houston, USA
| | - Mark Richards
- Department of Earth and Space Sciences, University of Washington, Seattle, USA
| |
Collapse
|
2
|
Seismic constraints and geodynamic implications of differential lithosphere-asthenosphere flow revealed in East Asia. Proc Natl Acad Sci U S A 2022; 119:e2203155119. [PMID: 36269858 PMCID: PMC9618042 DOI: 10.1073/pnas.2203155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the last 50 Ma, the East Asian continent has been a zone of massive continental collision and lithospheric deformation. While the consequences of this for Asian surface and lithospheric deformation have been intensively studied over the past 4 decades, the relationships between lithospheric deformation and underlying asthenospheric flow have been more difficult to constrain. Here we present a high resolution 3-D azimuthal anisotropy model for the northeastern Tibetan Plateau and its eastward continuation based on surface-wave tomography and shear-wave splitting measurements. This model shows that eastward lateral flow of asthenosphere beneath the northeastern Tibetan Plateau is being blocked by thick Ordos and Sichuan cratonic keels. The damming effect of these keels induces flow to first rotate around the Ordos keel and then transition into strong east-west flow beneath the thinner lithosphere that forms the lithospheric suture between the two cratonic keels. We further find that asthenosphere flow directions can differ from those of overlying lithosphere, with the asthenosphere neither being passively dragged by overlying lithosphere, nor being able to drag the overlying plate to mimic its subsurface flow. Finally, the region of eastward-channeled asthenospheric flow from Tibet underlies a belt of stronger intracontinental deformation in eastern China.
Collapse
|
3
|
Mantle-flow diversion beneath the Iranian plateau induced by Zagros' lithospheric keel. Sci Rep 2021; 11:2848. [PMID: 33531534 PMCID: PMC7854601 DOI: 10.1038/s41598-021-81541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Abstract
Previous investigation of seismic anisotropy indicates the presence of a simple mantle flow regime beneath the Turkish-Anatolian Plateau and Arabian Plate. Numerical modeling suggests that this simple flow is a component of a large-scale global mantle flow associated with the African superplume, which plays a key role in the geodynamic framework of the Arabia-Eurasia continental collision zone. However, the extent and impact of the flow pattern farther east beneath the Iranian Plateau and Zagros remains unclear. While the relatively smoothly varying lithospheric thickness beneath the Anatolian Plateau and Arabian Plate allows progress of the simple mantle flow, the variable lithospheric thickness across the Iranian Plateau is expected to impose additional boundary conditions on the mantle flow field. In this study, for the first time, we use an unprecedented data set of seismic waveforms from a network of 245 seismic stations to examine the mantle flow pattern and lithospheric deformation over the entire region of the Iranian Plateau and Zagros by investigation of seismic anisotropy. We also examine the correlation between the pattern of seismic anisotropy, plate motion using GPS velocities and surface strain fields. Our study reveals a complex pattern of seismic anisotropy that implies a similarly complex mantle flow field. The pattern of seismic anisotropy suggests that the regional simple mantle flow beneath the Arabian Platform and eastern Turkey deflects as a circular flow around the thick Zagros lithosphere. This circular flow merges into a toroidal component beneath the NW Zagros that is likely an indicator of a lateral discontinuity in the lithosphere. Our examination also suggests that the main lithospheric deformation in the Zagros occurs as an axial shortening across the belt, whereas in the eastern Alborz and Kopeh-Dagh a belt-parallel horizontal lithospheric deformation plays a major role.
Collapse
|
4
|
Zhu H, Stern RJ, Yang J. Seismic evidence for subduction-induced mantle flows underneath Middle America. Nat Commun 2020; 11:2075. [PMID: 32350254 PMCID: PMC7190827 DOI: 10.1038/s41467-020-15492-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Laboratory experiments and geodynamic simulations demonstrate that poloidal- and toroidal-mode mantle flows develop around subduction zones. Here, we use a new 3-D azimuthal anisotropy model constructed by full waveform inversion, to infer deep subduction-induced mantle flows underneath Middle America. At depths shallower than 150 km, poloidal-mode flow is perpendicular to the trajectory of the Middle American Trench. From 300 to 450 km depth, return flows surround the edges of the Rivera and Atlantic slabs, while escape flows are inferred through slab windows beneath Panama and central Mexico. Furthermore, at 700 km depth, the study region is dominated by the Farallon anomaly, with fast axes perpendicular to its strike, suggesting the development of lattice-preferred orientations by substantial stress. These observations provide depth-dependent seismic anisotropy for future mantle flow simulations, and call for further investigations about the deformation mechanisms and elasticity of minerals in the transition zone and uppermost lower mantle. The motions of subducted slabs are expected to drive mantle flow around slab edges, however, evidence of deep mantle flow has so far remained elusive. Here, the authors present a Full Waveform Inversion 3-D anisotropy model which allows them to infer deep subduction-induced mantle flows underneath the Mid-Americas and the Caribbean.
Collapse
Affiliation(s)
- Hejun Zhu
- Department of Geosciences, The University of Texas at Dallas, Dallas, TX, USA.
| | - Robert J Stern
- Department of Geosciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Jidong Yang
- Department of Geosciences, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
5
|
Kreemer C. Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jb006416] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Conrad CP, Behn MD, Silver PG. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004608] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Marone F, Romanowicz B. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature 2007; 447:198-201. [PMID: 17495924 DOI: 10.1038/nature05742] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/08/2007] [Indexed: 11/08/2022]
Abstract
The most likely cause of seismic anisotropy in the Earth's upper mantle is the lattice preferred orientation of anisotropic minerals such as olivine. Its presence reflects dynamic processes related to formation of the lithosphere as well as to present-day tectonic motions. A powerful tool for detecting and characterizing upper-mantle anisotropy is the analysis of shear-wave splitting measurements. Because of the poor vertical resolution afforded by this type of data, however, it has remained controversial whether the splitting has a lithospheric origin that is 'frozen-in' at the time of formation of the craton, or whether the anisotropy originates primarily in the asthenosphere, and is induced by shear owing to present-day absolute plate motions. In addition, predictions from surface-wave-derived models are largely incompatible with shear-wave splitting observations. Here we show that this disagreement can be resolved by simultaneously inverting surface waveforms and shear-wave splitting data. We present evidence for the presence of two layers of anisotropy with different fast-axis orientations in the cratonic part of the North American upper mantle. At asthenospheric depths (200-400 km) the fast axis is sub-parallel to the absolute plate motion, confirming the presence of shear related to current tectonic processes, whereas in the lithosphere (80-200 km), the orientation is significantly more northerly. In the western, tectonically active, part of North America, the fast-axis direction is consistent with the absolute plate motion throughout the depth range considered, in agreement with a much thinner lithosphere.
Collapse
Affiliation(s)
- Federica Marone
- Berkeley Seismological Laboratory, 209 McCone Hall, Berkeley, California 94720, USA
| | | |
Collapse
|
8
|
Eaton DW, Frederiksen A. Seismic evidence for convection-driven motion of the North American plate. Nature 2007; 446:428-31. [PMID: 17377580 DOI: 10.1038/nature05675] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 02/09/2007] [Indexed: 11/09/2022]
Abstract
Since the discovery of plate tectonics, the relative importance of driving forces of plate motion has been debated. Resolution of this issue has been hindered by uncertainties in estimates of basal traction, which controls the coupling between lithospheric plates and underlying mantle convection. Hotspot tracks preserve records of past plate motion and provide markers with which the relative motion between a plate's surface and underlying mantle regions may be examined. Here we show that the 115-140-Myr surface expression of the Great Meteor hotspot track in eastern North America is misaligned with respect to its location at 200 km depth, as inferred from plate-reconstruction models and seismic tomographic studies. The misalignment increases with age and is consistent with westward displacement of the base of the plate relative to its surface, at an average rate of 3.8 +/- 1.8 mm yr(-1). Here age-constrained 'piercing points' have enabled direct estimation of relative motion between the surface and underside of a plate. The relative displacement of the base is approximately parallel to seismic fast axes and calculated mantle flow, suggesting that asthenospheric flow may be deforming the lithospheric keel and exerting a driving force on this part of the North American plate.
Collapse
Affiliation(s)
- David W Eaton
- Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | | |
Collapse
|
9
|
Rychert CA, Fischer KM, Rondenay S. A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 2005; 436:542-5. [PMID: 16049485 DOI: 10.1038/nature03904] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 05/20/2005] [Indexed: 11/09/2022]
Abstract
Plate tectonic theory hinges on the concept of a relatively rigid lithosphere moving over a weaker asthenosphere, yet the nature of the lithosphere-asthenosphere boundary remains poorly understood. The gradient in seismic velocity that occurs at this boundary is central to constraining the physical and chemical properties that create differences in mechanical strength between the two layers. For example, if the lithosphere is simply a thermal boundary layer that is more rigid owing to colder temperatures, mantle flow models indicate that the velocity gradient at its base would occur over tens of kilometres. In contrast, if the asthenosphere is weak owing to volatile enrichment or the presence of partial melt, the lithosphere-asthenosphere boundary could occur over a much smaller depth range. Here we use converted seismic phases in eastern North America to image a very sharp seismic velocity gradient at the base of the lithosphere-a 3-11 per cent drop in shear-wave velocity over a depth range of 11 km or less at 90-110 km depth. Such a strong, sharp boundary cannot be reconciled with a purely thermal gradient, but could be explained by an asthenosphere that contains a few per cent partial melt or that is enriched in volatiles relative to the lithosphere.
Collapse
Affiliation(s)
- Catherine A Rychert
- Department of Geological Sciences, Brown University, Box 1846, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
10
|
Ryberg T. Simultaneous inversion of shear wave splitting observations from seismic arrays. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jb003303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Gung Y, Panning M, Romanowicz B. Global anisotropy and the thickness of continents. Nature 2003; 422:707-11. [PMID: 12700758 DOI: 10.1038/nature01559] [Citation(s) in RCA: 357] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 03/04/2003] [Indexed: 11/08/2022]
Abstract
For decades there has been a vigorous debate about the depth extent of continental roots. The analysis of heat-flow, mantle-xenolith and electrical-conductivity data all indicate that the coherent, conductive part of continental roots (the 'tectosphere') is at most 200-250 km thick. Some global seismic tomographic models agree with this estimate, but others suggest that a much thicker zone of high velocities lies beneath continental shields, reaching a depth of at least 400 km. Here we show that this disagreement can be reconciled by taking into account seismic anisotropy. We show that significant radial anisotropy, with horizontally polarized shear waves travelling faster than those that are vertically polarized, is present under most cratons in the depth range 250-400 km--similar to that found under ocean basins at shallower depths of 80-250 km. We propose that, in both cases, the anisotropy is related to shear in a low-viscosity asthenospheric channel, located at different depths under continents and oceans. The seismically defined 'tectosphere' is then at most 200-250 km thick under old continents. The 'Lehmann discontinuity', observed mostly under continents at about 200-250 km, and the 'Gutenberg discontinuity', observed under oceans at depths of about 60-80 km, may both be associated with the bottom of the lithosphere, marking a transition to flow-induced asthenospheric anisotropy.
Collapse
Affiliation(s)
- Yuancheng Gung
- Berkeley Seismological Laboratory and Department of Earth and Planetary Science, Berkeley, California 94720, USA
| | | | | |
Collapse
|
12
|
Mehl L. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jb002233] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Abstract
Elastic anisotropy is present where the speed of a seismic wave depends on its direction. In Earth's mantle, elastic anisotropy is induced by minerals that are preferentially oriented in a directional flow or deformation. Earthquakes generate two seismic wave types: compressional (P) and shear (S) waves, whose coupling in anisotropic rocks leads to scattering, birefringence, and waves with hybrid polarizations. This varied behavior is helping geophysicists explore rock textures within Earth's mantle and crust, map present-day upper-mantle convection, and study the formation of lithospheric plates and the accretion of continents in Earth history.
Collapse
Affiliation(s)
- Jeffrey Park
- Department of Geology and Geophysics, Yale University, Post Office Box 208109, New Haven, CT 06520-8109, USA
| | | |
Collapse
|
14
|
Hall CE, Fischer KM, Parmentier EM, Blackman DK. The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900297] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Levin V, Menke W, Park J. No regional anisotropic domains in the northeastern U.S. Appalachians. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Petit C, Ebinger C. Flexure and mechanical behavior of cratonic lithosphere: Gravity models of the East African and Baikal rifts. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900101] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|