1
|
The Large Dendritic Morphologies in the Antoniadi Crater (Mars) and Their Potential Astrobiological Significance. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mars has held large amounts of running and standing water throughout its history, as evidenced by numerous morphologies attributed to rivers, outflow channels, lakes, and possibly an ocean. This work examines the crater Antoniadi located in the Syrtis Major quadrangle. Some parts of the central area of the crater exhibit giant polygonal mud cracks, typical of endured lake bottom, on top of which a dark, tens of kilometers-long network of dendritic (i.e., arborescent) morphologies emerges, at first resembling the remnant of river networks. The network, which is composed of tabular sub-units, is in relief overlying hardened mud, a puzzling feature that, in principle, could be explained as landscape inversion resulting from stronger erosion of the lake bottom compared to the endured crust of the riverine sediments. However, the polygonal mud cracks have pristine boundaries, which indicate limited erosion. Furthermore, the orientation of part of the network is the opposite of what the flow of water would entail. Further analyses indicate the similarity of the dendrites with controlled diffusion processes rather than with the river network, and the presence of morphologies incompatible with river, alluvial, or underground sapping processes, such as overlapping of branches belonging to different dendrites or growth along fault lines. An alternative explanation worth exploring due to its potential astrobiological importance is that the network is the product of ancient reef-building microbialites on the shallow Antoniadi lake, which enjoyed the fortunate presence of a heat source supplied by the Syrtis Major volcano. The comparison with the terrestrial examples and the dating of the bottom of the crater (formed at 3.8 Ga and subjected to a resurfacing event at 3.6 Ga attributed to the lacustrine drape) contribute to reinforcing (but cannot definitely prove) the scenario of microbialitic origin for dendrites. Thus, the present analysis based on the images available from the orbiters cannot be considered proof of the presence of microbialites in ancient Mars. It is concluded that the Antoniadi crater could be an interesting target for the research of past Martian life in future landing missions.
Collapse
|
2
|
Mangold N, Gupta S, Gasnault O, Dromart G, Tarnas JD, Sholes SF, Horgan B, Quantin-Nataf C, Brown AJ, Le Mouélic S, Yingst RA, Bell JF, Beyssac O, Bosak T, Calef F, Ehlmann BL, Farley KA, Grotzinger JP, Hickman-Lewis K, Holm-Alwmark S, Kah LC, Martinez-Frias J, McLennan SM, Maurice S, Nuñez JI, Ollila AM, Pilleri P, Rice JW, Rice M, Simon JI, Shuster DL, Stack KM, Sun VZ, Treiman AH, Weiss BP, Wiens RC, Williams AJ, Williams NR, Williford KH. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 2021; 374:711-717. [PMID: 34618548 DOI: 10.1126/science.abl4051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- N Mangold
- Laboratoire Planétologie et Géodynamique, Centre National de Recherches Scientifiques, Université Nantes, Université Angers, Unité Mixte de Recherche 6112, 44322 Nantes, France
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - O Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - G Dromart
- Laboratoire de Géologie de Lyon-Terre Planètes Environnement, Univ Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S F Sholes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - C Quantin-Nataf
- Laboratoire de Géologie de Lyon-Terre Planètes Environnement, Univ Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - A J Brown
- Plancius Research, Severna Park, MD 21146, USA
| | - S Le Mouélic
- Laboratoire Planétologie et Géodynamique, Centre National de Recherches Scientifiques, Université Nantes, Université Angers, Unité Mixte de Recherche 6112, 44322 Nantes, France
| | - R A Yingst
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - J F Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - O Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Unité Mixte de Recherche 7590, Centre National de Recherches Scientifiques, Sorbonne Université, Museum National d'Histoires Naturelles, 75005 Paris, France
| | - T Bosak
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Calef
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, South Kensington, London SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, I-40126 Bologna, Italy
| | - S Holm-Alwmark
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.,Department of Geology, Lund University, 22362 Lund, Sweden.,Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - J Martinez-Frias
- Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - S Maurice
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - J I Nuñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - A M Ollila
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - P Pilleri
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Université Paul Sabatier, Centre National de Recherches Scientifiques, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - J W Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - M Rice
- Geology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
| | - J I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - D L Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - V Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | - B P Weiss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R C Wiens
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - N R Williams
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - K H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| |
Collapse
|
3
|
Salese F, Kleinhans MG, Mangold N, Ansan V, McMahon W, de Haas T, Dromart G. Estimated Minimum Life Span of the Jezero Fluvial Delta (Mars). ASTROBIOLOGY 2020; 20:977-993. [PMID: 32434374 DOI: 10.1089/ast.2020.2228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The paleo-lake floor at the edge of the Jezero delta has been selected as the NASA 2020 rover landing site. In this article, we demonstrate the sequences of lake filling and delta formation and constrain the minimum life span of the Jezero paleo-lake from sedimentological and hydrological analyses. Two main phases of delta evolution can be recognized by utilizing imagery provided by the High Resolution Imaging Science Experiment (NASA Mars Reconnaissance Orbiter) and High Resolution Stereo Camera (ESA Mars Express): (1) basin infilling before the breaching of the Jezero rim and (2) the delta formation itself. Our results suggest that delta formation occurred over a minimum period of 90-550 years of hydrological activity. Breaching of the Jezero rim occurred in at least three distinct episodes, which spanned a far longer time-period than overall delta formation. This evolutionary history implies that the Jezero-lake floor would have been a haven for fine-grained sediment accumulation and hosted an active environment of significant astrobiological importance.
Collapse
Affiliation(s)
- Francesco Salese
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
- International Research School of Planetary Sciences, Università Gabriele D'Annunzio, Pescara, Italy
| | | | - Nicolas Mangold
- Laboratoire de Planétologie et de Géodynamique de Nantes, UMR6112, CNRS/Nantes University, Nantes, France
| | - Veronique Ansan
- Laboratoire de Planétologie et de Géodynamique de Nantes, UMR6112, CNRS/Nantes University, Nantes, France
| | - William McMahon
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Tjalling de Haas
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Gilles Dromart
- University of Lyon, ENSL, University of Lyon 1, CNRS, LGL-TPE, Lyon, France
| |
Collapse
|
4
|
Aszalós JM, Szabó A, Megyes M, Anda D, Nagy B, Borsodi AK. Bacterial Diversity of a High-Altitude Permafrost Thaw Pond Located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). ASTROBIOLOGY 2020; 20:754-765. [PMID: 32525738 DOI: 10.1089/ast.2018.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial ecology of permafrost, due to its ecological and astrobiological importance, has been in the focus of studies in past decades. Although permafrost is an ancient and stable environment, it is also subjected to current climate changes. Permafrost degradation often results in generation of thaw ponds, a phenomenon not only reported mainly from polar regions but also present in high-altitude permafrost environments. Our knowledge about microbial communities of thaw ponds in these unique, remote mountain habitats is sparse. This study presents the first culture collection and results of the next-generation DNA sequencing (NGS) analysis of bacterial communities inhabiting a high-altitude permafrost thaw pond. In February 2016, a permafrost thaw pond on the Ojos del Salado at 5900 m a.s.l. (meters above sea level) was sampled as part of the Hungarian Dry Andes Research Programme. A culture collection of 125 isolates was established, containing altogether 11 genera belonging to phyla Bacteroidetes, Actinobacteria, and Proteobacteria. Simplified bacterial communities with a high proportion of candidate and hitherto uncultured bacteria were revealed by Illumina MiSeq NGS. Water of the thaw pond was dominated by Bacteroidetes and Proteobacteria, while in the sediment of the lake and permafrost, members of Acidobacteria, Actinobacteria, Bacteroidetes, Patescibacteria, Proteobacteria, and Verrucomicrobia were abundant. This permafrost habitat can be interesting as a potential Mars analog.
Collapse
Affiliation(s)
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Melinda Megyes
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Danube Research Institute, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
5
|
Salese F, Pondrelli M, Neeseman A, Schmidt G, Ori GG. Geological Evidence of Planet-Wide Groundwater System on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2019; 124:374-395. [PMID: 31007995 PMCID: PMC6472477 DOI: 10.1029/2018je005802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The scale of groundwater upwelling on Mars, as well as its relation to sedimentary systems, remains an ongoing debate. Several deep craters (basins) in the northern equatorial regions show compelling signs that large amounts of water once existed on Mars at a planet-wide scale. The presence of water-formed features, including fluvial Gilbert and sapping deltas fed by sapping valleys, constitute strong evidence of groundwater upwelling resulting in long term standing bodies of water inside the basins. Terrestrial field evidence shows that sapping valleys can occur in basalt bedrock and not only in unconsolidated sediments. A hypothesis that considers the elevation differences between the observed morphologies and the assumed basal groundwater level is presented and described as the "dike-confined water" model, already present on Earth and introduced for the first time in the Martian geological literature. Only the deepest basins considered in this study, those with bases deeper than -4000 m in elevation below the Mars datum, intercepted the water-saturated zone and exhibit evidence of groundwater fluctuations. The discovery of these groundwater discharge sites on a planet-wide scale strongly suggests a link between the putative Martian ocean and various configurations of sedimentary deposits that were formed as a result of groundwater fluctuations during the Hesperian period. This newly recognized evidence of water-formed features significantly increases the chance that biosignatures could be buried in the sediment. These deep basins (groundwater-fed lakes) will be of interest to future exploration missions as they might provide evidence of geological conditions suitable for life.
Collapse
Affiliation(s)
- Francesco Salese
- Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - Monica Pondrelli
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - Alicia Neeseman
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing GroupFreie Universität BerlinBerlinGermany
| | - Gene Schmidt
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - Gian Gabriele Ori
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
- Ibn Battuta CentreUniversité Cadi AyyadMarrakeshMorocco
| |
Collapse
|
6
|
Hargitai HI, Gulick VC, Glines NH. Paleolakes of Northeast Hellas: Precipitation, Groundwater-Fed, and Fluvial Lakes in the Navua-Hadriacus-Ausonia Region, Mars. ASTROBIOLOGY 2018; 18:1435-1459. [PMID: 30289279 DOI: 10.1089/ast.2018.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The slopes of northeastern Hellas Basin, Mars exhibit a wide variety of fluvial landforms. In addition to the Dao-Niger-Harmakhis-Reull Valles outflow channels, many smaller channels and valleys cut into this terrain, several of which include discontinuous sections. We have mapped these channels and channel-associated depressions to investigate potential paleolakes from the Navua Valles in the West, through the Hadriacus Mons volcano in the center, to the Ausonia Montes in the East. We have identified three groups of candidate paleolakes at the source regions of major drainages and a fourth paleolake type scattered along the lower reaches of these drainages. Each paleolake group has a distinct character, determined by different formative processes, including precipitation and groundwater for lakes at the channel sources, and fluvially transported water at the lower channel reaches. Only one of these 34 basins had been cataloged previously in paleolake basin databases. Several of these sites are at proximity to the Hadriacus volcanic center, where active dikes during the Hesperian could have produced hydrothermal systems and habitable environments. Deposits within these paleolake depressions and at the termini of channels connected to these candidate paleolakes contain the geological and potentially biological record of these environments.
Collapse
Affiliation(s)
- Henrik I Hargitai
- 1 NASA Ames Research Center, Space Science Division, Moffett Field, California
- 2 Department of Media and Communication, Eötvös Loránd University , Budapest, Hungary
| | - Virginia C Gulick
- 1 NASA Ames Research Center, Space Science Division, Moffett Field, California
- 3 SETI Institute , Mountain View, California
| | - Natalie H Glines
- 1 NASA Ames Research Center, Space Science Division, Moffett Field, California
- 3 SETI Institute , Mountain View, California
| |
Collapse
|
7
|
Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez J. Fluvial geomorphology on Earth-like planetary surfaces: A review. GEOMORPHOLOGY (AMSTERDAM, NETHERLANDS) 2015; 245:149-182. [PMID: 29176917 PMCID: PMC5701759 DOI: 10.1016/j.geomorph.2015.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
Collapse
Affiliation(s)
- Victor R. Baker
- Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher W. Hamilton
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Devon M. Burr
- Earth and Planetary Sciences Department, University of Tennessee-Knoxville, Knoxville, TN 37996-1410, USA
| | - Virginia C. Gulick
- SETI Institute, Mountain View, CA 94043, USA
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
| | - Goro Komatsu
- International Research School of Planetary Sciences, Università d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Wei Luo
- Department of Geography, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - J.A.P. Rodriguez
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
- Planetary Science Institute, Tucson, AZ 85719, USA
| |
Collapse
|
8
|
Goudge TA, Mustard JF, Head JW, Fassett CI. Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Irwin RP, Zimbelman JR. Morphometry of Great Basin pluvial shore landforms: Implications for paleolake basins on Mars. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Mangold N, Ansan V, Masson P, Quantin C, Neukum G. Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002985] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Le Deit L, Le Mouélic S, Bourgeois O, Combe JP, Mège D, Sotin C, Gendrin A, Hauber E, Mangold N, Bibring JP. Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and geological interpretation. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002950] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Kraal ER, van Dijk M, Postma G, Kleinhans MG. Martian stepped-delta formation by rapid water release. Nature 2008; 451:973-6. [DOI: 10.1038/nature06615] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 12/13/2007] [Indexed: 11/09/2022]
|
13
|
Di Achille G, Ori GG, Reiss D. Evidence for late Hesperian lacustrine activity in Shalbatana Vallis, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002858] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Kraal ER, Asphaug E, Moore JM, Lorenz RD. Quantitative geomorphic modeling of Martian bedrock shorelines. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Di Achille G, Marinangeli L, Ori GG, Hauber E, Gwinner K, Reiss D, Neukum G. Geological evolution of the Tyras Vallis paleolacustrine system, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002561] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Howard AD, Moore JM, Irwin RP. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002459] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Pondrelli M. Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004je002335] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Irwin RP, Howard AD, Craddock RA, Moore JM. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002460] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Leverington DW. Differential subsidence and rebound in response to changes in water loading on Mars: Possible effects on the geometry of ancient shorelines. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Leverington DW. An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004je002237] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Wilson L. Mars outflow channels: A reappraisal of the estimation of water flow velocities from water depths, regional slopes, and channel floor properties. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004je002281] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Abstract
Landforms representative of sedimentary processes and environments that occurred early in martian history have been recognized in Mars Global Surveyor Mars Orbiter Camera and Mars Odyssey Thermal Emission Imaging System images. Evidence of distributary, channelized flow (in particular, flow that lasted long enough to foster meandering) and the resulting deposition of a fan-shaped apron of debris indicate persistent flow conditions and formation of at least some large intracrater layered sedimentary sequences within fluvial, and potentially lacustrine, environments.
Collapse
Affiliation(s)
- Michael C Malin
- Malin Space Science Systems, Post Office Box 910148, San Diego, CA 92191, USA
| | | |
Collapse
|
23
|
Abstract
Over the past 30 years, the water-generated landforms and landscapes of Mars have been revealed in increasing detail by a succession of spacecraft missions. Recent data from the Mars Global Surveyor mission confirm the view that brief episodes of water-related activity, including glaciation, punctuated the geological history of Mars. The most recent of these episodes seems to have occurred within the past 10 million years. These new results are anomalous in regard to the prevailing view that the martian surface has been continuously extremely cold and dry, much as it is today, for the past 3.9 billion years. Interpretations of the new data are controversial, but explaining the anomalies in a consistent manner leads to potentially fruitful hypotheses for understanding the evolution of Mars in relation to Earth.
Collapse
Affiliation(s)
- V R Baker
- Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 85721-0011, USA.
| |
Collapse
|