1
|
Ferreira da Costa Campos T, Araujo JH, Sichel SE, Pastura VFDS, Motoki KF, Mairink Barão L, Maia M, Monteiro da Fonseca E, Navoni J, Vargas T, Szatmari P, Brunelli D. Mapping of surface radiogenic heat production from in situ gamma spectrometry and chemical data of exhumed mantle peridotites at the St. Peter and St. Paul archipelago (equatorial Atlantic). Appl Radiat Isot 2023; 192:110608. [PMID: 36549177 DOI: 10.1016/j.apradiso.2022.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
This work presents the first mapping of the radiogenic heat production (RHP) and the respective radiogenic heat flow (RHF) of the Saint Peter and Saint Paul Archipelago (SPSPA) located at 1°N in the Equatorial Atlantic Ocean. Using radiogenic heat producing elements (RPE) we inferred a radiogenic heat production ranging 0.08-0.68 μW/m3 (Median: 0.21 μW/m3 and Geometric mean: 0.25 μW/m3) by whole-rock chemical analysis and between 0.08 and 0.48 μW/m3 (Median: 0.19 μW/m3; Geometric mean: 0.19 μW/m3) by in situ Gamma radiation spectrometry. The mean of radiogenic heat production of mylonite rocks from SPSPA (0.22 μW/m3) is significantly higher than predicted values for ultramafic rocks as those largely outcropping in the SPSPA. This is probably due to the pervasive alteration of these rocks and the incorporation of little magma fractions during mylonitization. By converse, the average surface radiogenic heat flow (49.7 μW/m2) is lower than that predicted for the oceanic lithosphere, suggesting that the upper mantle contribution to the heat flow is also low in the SPSPA region. Based on the acquired data and the peculiar tectonics of the SPSPA we propose that the lithospheric mantle around the SPSPA area is colder than that surrounding the Equatorial Atlantic region.
Collapse
Affiliation(s)
| | - José Humberto Araujo
- Department of Physics of Federal University of Rio Grande do Norte, 59078-970, Natal, Rio Grande do Norte, Brazil.
| | - Susanna Eleonora Sichel
- Department of Geology and Geophysics, Federal Fluminense University, Niteroi, 24210-240, Rio de Janeiro, Brazil.
| | | | - Kenji Freire Motoki
- Department of Geology and Geophysics, Federal Fluminense University, Niteroi, 24210-240, Rio de Janeiro, Brazil.
| | - Leonardo Mairink Barão
- Department of Geology of Parana Federal University, Curitiba, 80060-240, Parana, Brazil.
| | - Marcia Maia
- European Institute of the Sea - Oceanic Domain of University of Western Brittany, Plouzané, Brest, 29280, France.
| | - Estefan Monteiro da Fonseca
- Department of Geology and Geophysics, Federal Fluminense University, Niteroi, 24210-240, Rio de Janeiro, Brazil.
| | - Julio Navoni
- Department of Geology of Federal University of Rio Grande do Norte, 59078-970, Natal, Rio Grande do Norte, Brazil.
| | - Thais Vargas
- Department of Mineralogy and Igneous Petrology of Estate University of Rio de Janeiro, 20550-900, Rio de Janeiro, Brazil.
| | - Peter Szatmari
- Leopoldo Américo Miguêz de Mello Research and Development Center (CENPES/PETROBRAS), Rio de Janeiro, 21941-915, Rio de Janeiro, Brazil.
| | - Daniele Brunelli
- Department of Chemistry and Geology of University of Modena and Reggio Emilia, 41125, Italy.
| |
Collapse
|
2
|
Tenzer R, Ji Y, Chen W. The Accuracy Assessment of the PREM and AK135-F Radial Density Models. SENSORS 2022; 22:s22114180. [PMID: 35684801 PMCID: PMC9185503 DOI: 10.3390/s22114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022]
Abstract
The Earth’s synthetic density and gravitational models can be used to validate numerical methods for global (or large-scale) gravimetric forward and inverse modelling formulated either in the spatial or spectral domains. The Preliminary Reference Earth Model (PREM) density parameters can be adopted as a 1-D reference density model and further refined using more detailed 2-D or 3-D crust and mantle density models. Alternatively, the AK135-F density parameters can be used for this purpose. In this study, we investigate options for a refinement of the Earth’s synthetic density model by assessing the accuracy of available 1-D density models, specifically the PREM and AK135-F radial density parameters. First, we use density parameters from both models to estimate the Earth’s total mass and compare these estimates with published results. We then estimate the Earth’s gravity field parameters, particularly the geoidal geopotential number W0 and the mean gravitational attraction and compare them with published values. According to our results, the Earth’s total mass from the two models (the PREM and the AK135-F) differ less than 0.02% and 0.01%, respectively, when compared with the value adopted by the International Astronomical Union (IAU). The geoidal geopotential values of the two models differ from the value adopted by the IAU by less than 0.1% and 0.04%, respectively. The values of the mean gravitational attraction of the two models differ less than 0.02% and 0.08%, respectively, when compared with the value obtained from the geocentric gravitational constant and the Earth’s mean radius. These numerical findings ascertain that the PREM and AK135-F density parameters are suitable for defining a 1-D reference density model.
Collapse
Affiliation(s)
- Robert Tenzer
- Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong; (R.T.); (Y.J.)
| | - Yuting Ji
- Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong; (R.T.); (Y.J.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenjin Chen
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Correspondence:
| |
Collapse
|
3
|
Perchuk AL, Gerya TV, Zakharov VS, Griffin WL. Depletion of the upper mantle by convergent tectonics in the Early Earth. Sci Rep 2021; 11:21489. [PMID: 34728677 PMCID: PMC8563749 DOI: 10.1038/s41598-021-00837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Partial melting of mantle peridotites at spreading ridges is a continuous global process that forms the oceanic crust and refractory, positively buoyant residues (melt-depleted mantle peridotites). In the modern Earth, these rocks enter subduction zones as part of the oceanic lithosphere. However, in the early Earth, the melt-depleted peridotites were 2-3 times more voluminous and their role in controlling subduction regimes and the composition of the upper mantle remains poorly constrained. Here, we investigate styles of lithospheric tectonics, and related dynamics of the depleted mantle, using 2-D geodynamic models of converging oceanic plates over the range of mantle potential temperatures (Tp = 1300-1550 °C, ∆T = T - Tmodern = 0-250 °C) from the Archean to the present. Numerical modeling using prescribed plate convergence rates reveals that oceanic subduction can operate over this whole range of temperatures but changes from a two-sided regime at ∆T = 250 °C to one-sided at lower mantle temperatures. Two-sided subduction creates V-shaped accretionary terrains up to 180 km thick, composed mainly of highly hydrated metabasic rocks of the subducted oceanic crust, decoupled from the mantle. Partial melting of the metabasic rocks and related formation of sodic granitoids (Tonalite-Trondhjemite-Granodiorite suites, TTGs) does not occur until subduction ceases. In contrast, one sided-subduction leads to volcanic arcs with or without back-arc basins. Both subduction regimes produce over-thickened depleted upper mantle that cannot subduct and thus delaminates from the slab and accumulates under the oceanic lithosphere. The higher the mantle temperature, the larger the volume of depleted peridotites stored in the upper mantle. Extrapolation of the modeling results reveals that oceanic plate convergence at ∆T = 200-250 °C might create depleted peridotites (melt extraction of > 20%) constituting more than half of the upper mantle over relatively short geological times (~ 100-200 million years). This contrasts with the modeling results at modern mantle temperatures, where the amount of depleted peridotites in the upper mantle does not increase significantly with time. We therefore suggest that the bulk chemical composition of upper mantle in the Archean was much more depleted than the present mantle, which is consistent with the composition of the most ancient lithospheric mantle preserved in cratonic keels.
Collapse
Affiliation(s)
- A L Perchuk
- Faculty of Geology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, 142432, Russia.
| | - T V Gerya
- Department of Earth Sciences, Swiss Federal Institute of Technology Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - V S Zakharov
- Faculty of Geology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - W L Griffin
- Australian Research Council Centre of Excellence for Core to Crust Fluid Systems/GEMOC, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Review of the Heat Flow Mapping in Polish Sedimentary Basin across Different Tectonic Terrains. ENERGIES 2021. [DOI: 10.3390/en14196103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat flow patterns variability related to the age of the consolidated, and differences in, sedimentary thickness of the sedimentary succession are important constraints upon the thermal state of the sedimentary fill and its geothermal energy potential. Heat flow in the Permian basin of central Europe varies from a low of 40 mWm−2 in the Precambrian Platform to 80 mWm−2 in the Paleozoic basement platform influencing temperature for geothermal potential drilling depth. Continuity of thermal patterns and compatibility of heat flow Q across the Permian basin across the Polish–German basin was known from heat flow data ever since the first heat flow map of Europe in 1979. Both Polish and German heat flow determinations used lab-measured thermal conductivity on cores. This is not the case for the recent heat flow map of Poland published in 2009 widely referenced in Polish geological literature. Significant differences in heat flow magnitude exist between many historical heat flow maps of Poland over the 1970s–1990s and recent 21st century patterns. We find that the differences in heat flow values of some 20–30 mWm−2 in Western Poland exist between heat flow maps using thermal conductivity models using well log interpreted mineral and porosity content and assigned world averages of rock and fluid thermal conductivity versus those measured on cores. These differences in heat flow are discussed in the context of resulting mantle heat flow and the Lithosphere-Asthenosphere Boundary depth modelled differences and possible overestimates of deep thermal conditions for enhanced geothermal energy prospects in Poland.
Collapse
|
5
|
Abstract
Rifted margins are the result of the successful process of thinning and breakup of the continental lithosphere leading to the formation of new oceanic lithosphere. Observations on rifted margins are now integrating an increasing amount of multi-channel seismic data and drilling of several Continent-Ocean Transitions. Based on large scale geometries and domains observed on high-quality multi-channel seismic data, this article proposes a classification reflecting the mechanical behavior of the crust from localized to diffuse deformation (strong/coupled to weak/decoupled mechanical behaviors) and magmatic intensity leading to breakup from magma-rich to magma-poor margins. We illustrate a simple classification based on mechanical behavior and magmatic production with examples of rifted margins. We propose a non-exhaustive list of forcing parameters that can control the initial rifting conditions but also their evolution through time. Therefore, rifted margins are not divided into opposing types, but described as a combination and continuum that can evolve through time and space.
Collapse
|
6
|
Abstract
All models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp > 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp < 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.
Collapse
|
7
|
Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin. ENERGIES 2021. [DOI: 10.3390/en14030706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.
Collapse
|
8
|
Perchuk AL, Gerya TV, Zakharov VS, Griffin WL. Building cratonic keels in Precambrian plate tectonics. Nature 2020; 586:395-401. [PMID: 33057224 DOI: 10.1038/s41586-020-2806-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/26/2020] [Indexed: 11/09/2022]
Abstract
The ancient cores of continents (cratons) are underlain by mantle keels-volumes of melt-depleted, mechanically resistant, buoyant and diamondiferous mantle up to 350 kilometres thick, which have remained isolated from the hotter and denser convecting mantle for more than two billion years. Mantle keels formed only in the Early Earth (approximately 1.5 to 3.5 billion years ago in the Precambrian eon); they have no modern analogues1-4. Many keels show layering in terms of degree of melt depletion5-7. The origin of such layered lithosphere remains unknown and may be indicative of a global tectonics mode (plate rather than plume tectonics) operating in the Early Earth. Here we investigate the possible origin of mantle keels using models of oceanic subduction followed by arc-continent collision at increased mantle temperatures (150-250 degrees Celsius higher than the present-day values). We demonstrate that after Archaean plate tectonics began, the hot, ductile, positively buoyant, melt-depleted sublithospheric mantle layer located under subducting oceanic plates was unable to subduct together with the slab. The moving slab left behind craton-scale emplacements of viscous protokeel beneath adjacent continental domains. Estimates of the thickness of this sublithospheric depleted mantle show that this mechanism was efficient at the time of the major statistical maxima of cratonic lithosphere ages. Subsequent conductive cooling of these protokeels would produce mantle keels with their low modern temperatures, which are suitable for diamond formation. Precambrian subduction of oceanic plates with highly depleted mantle is thus a prerequisite for the formation of thick layered lithosphere under the continents, which permitted their longevity and survival in subsequent plate tectonic processes.
Collapse
Affiliation(s)
- A L Perchuk
- Geological Faculty, Lomonosov Moscow State University, Moscow, Russia. .,Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia.
| | - T V Gerya
- Swiss Federal Institute of Technology Zurich, Department of Earth Sciences, Zurich, Switzerland
| | - V S Zakharov
- Geological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - W L Griffin
- Australian Research Council Centre of Excellence for Core to Crust Fluid Systems/GEMOC, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure. MINERALS 2020. [DOI: 10.3390/min10090780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The equation of state and stability of topaz at high-pressure/high-temperature conditions have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy in this study. No phase transition occurs on topaz over the experimental pressure–temperature (P-T) range. The pressure–volume data were fitted by the third-order Birch–Murnaghan equation of state (EoS) with the zero-pressure unit–cell volume V0 = 343.86 (9) Å3, the zero-pressure bulk modulus K0 = 172 (3) GPa, and its pressure derivative K’0 = 1.3 (4), while the obtained K0 = 155 (2) GPa when fixed K’0 = 4. In the pressure range of 0–24.4 GPa, the vibration modes of in-plane bending OH-groups for topaz show non-linear changes with the increase in pressure, while the other vibration modes show linear changes. Moreover, the temperature–volume data were fitted by Fei’s thermal equation with the thermal expansion coefficient α300 = 1.9 (1) × 10−5 K−1 at 300 K. Finally, the P-T stability of topaz was studied by a synchrotron-based single-crystal XRD at simultaneously high P-T conditions up to ~10.9 GPa and 700 K, which shows that topaz may maintain a metastable state at depths above 370 km in the upper mantle along the coldest subducting slab geotherm. Thus, topaz may be a potential volatile-carrier in the cold subduction zone. It can carry hydrogen and fluorine elements into the deep upper mantle and further affect the geochemical behavior of the upper mantle.
Collapse
|
10
|
Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields. MINERALS 2020. [DOI: 10.3390/min10060549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To gain better insight into the thermal state and composition of the lithospheric mantle beneath the Upper Muna kimberlite field (Siberian craton), a suite of 323 clinopyroxene xenocrysts and 10 mantle xenoliths from the Komsomolskaya-Magnitnaya (KM) pipe have been studied. We selected 188 clinopyroxene grains suitable for precise pressure (P)-temperature (T) estimation using single-clinopyroxene thermobarometry. The majority of P-T points lie along a narrow, elongated field in P-T space with a cluster of high-T and high-P points above 1300 °C, which deviates from the main P-T trend. The latter points may record a thermal event associated with kimberlite magmatism (a “stepped” or “kinked” geotherm). In order to eliminate these factors, the steady-state mantle paleogeotherm for the KM pipe at the time of initiation of kimberlite magmatism (Late Devonian–Early Carboniferous) was constrained by numerical fitting of P-T points below T = 1200 °C. The obtained mantle paleogeotherm is similar to the one from the nearby Novinka pipe, corresponding to a ~34–35 mW/m2 surface heat flux, 225–230 km lithospheric thickness, and 110–120 thick “diamond window” for the Upper Muna field. Coarse peridotite xenoliths are consistent in their P-T estimates with the steady-state mantle paleogeotherm derived from clinopyroxene xenocrysts, whereas porphyroclastic ones plot within the cluster of high-T and high-P clinopyroxene xenocrysts. Discrimination using Cr2O3 demonstrates that peridotitic clinopyroxene xenocrysts are prevalent (89%) among all studied 323 xenocrysts, suggesting that the Upper Muna mantle is predominantly composed of peridotites. Clinopyroxene-poor or -free peridotitic rocks such as harzburgites and dunites may be evident at depths of 140–180 km in the Upper Muna mantle. Judging solely from the thermal considerations and the thickness of the lithosphere, the KM and Novinka pipes should have excellent diamond potential. However, all pipes in the Upper Muna field have low diamond grades (<0.9, in carats/ton), although the lithosphere thickness is almost similar to the values obtained for the high-grade Udachnaya and Mir pipes from the Daldyn and Mirny fields, respectively. Therefore, other factors have affected the diamond grade of the Upper Muna kimberlite field.
Collapse
|
11
|
Radioactive Heat Production and Terrestrial Heat Flow in the Xiong’an Area, North China. ENERGIES 2019. [DOI: 10.3390/en12244608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Herein, integrated heat production analysis in the Xiong’an area was conducted by measuring uranium, thorium, and potassium in different rock types to clarify crust heat flow contribution, simulate the conductive terrestrial heat flow, and illustrate heat source mechanisms of Xiong’an area geothermal resources. The study area was divided into three lithosphere structure types from west to east, and heat production corresponded to layer thickness and heat production with the central area having thicker crust and lower heat production than the eastern and western areas. Crustal heat production, mantle heat flow, and crust–mantle heat flow ratio reveal a ‘cold crust-hot mantle’ in the Xiong’an area.
Collapse
|
12
|
Low-gradient, single-threaded rivers prior to greening of the continents. Proc Natl Acad Sci U S A 2019; 116:11652-11657. [PMID: 31118286 DOI: 10.1073/pnas.1901642116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Silurian-age rise of land plants is hypothesized to have caused a global revolution in the mechanics of rivers. In the absence of vegetation-controlled bank stabilization effects, pre-Silurian rivers are thought to be characterized by shallow, multithreaded flows, and steep river gradients. This hypothesis, however, is at odds with the pancontinental scale of early Neoproterozoic river systems that would have necessitated extraordinarily high mountains if such river gradients were commonplace at continental scale, which is inconsistent with constraints on lithospheric thickness. To reconcile these observations, we generated estimates of paleogradients and morphologies of pre-Silurian rivers using a well-developed quantitative framework based on the formation of river bars and dunes. We combined data from previous work with original field measurements of the scale, texture, and structure of fluvial deposits in Proterozoic-age Torridonian Group, Scotland-a type-example of pancontinental, prevegetation fluvial systems. Results showed that these rivers were low sloping (gradients 10-5 to 10-4), relatively deep (4 to 15 m), and had morphology similar to modern, lowland rivers. Our results provide mechanistic evidence for the abundance of low gradient, single-threaded rivers in the Proterozoic eon, at a time well before the evolution and radiation of land plants-despite the absence of muddy and vegetated floodplains. Single-threaded rivers with stable floodplains appear to have been a persistent feature of our planet despite singular changes in its terrestrial biota.
Collapse
|
13
|
Abstract
The Earth’s continental crust represents the outermost envelope of the solid Earth, controlling exchanges within the geosphere and reflecting geodynamics processes. One of the fundamental issues of Earth Science aims to determine crustal thickness in past geodynamic environments in order to discuss the evolution of certain geodynamic processes through time. Despite presenting a continuing challenge, the evolution of crustal thickness during the last 3 billion years can be investigated using indirect clues yielded by the chemical signature of mafic magmas and associated ferromagnesian minerals (pyroxene, amphibole). Here, we present a new statistical assessment of a global database of magmatic and mineral chemical information. Analysis reveals the increasing occurrence of high-temperature pyroxenes and amphiboles growing in Ca-rich, Fe-poor magma since ~1 Ga, which contrasts with lower temperature conditions of minerals crystallization throughout the Meso- and Palaeoproterozoic times. This is interpreted to reflect temporal changes in the control of Earth’s crust on mantle-derived magma composition, related to changes in lithospheric thickness and mantle secular cooling. We propose that thick existing crust is associated with deeper, hotter magmatic reservoirs, potentially elucidating the mineral chemistry and the contrasting iron content between primary and derivative mafic magmas. Based on both the chemical and mineral information of mafic magma, an integrated approach provides qualitative estimates of past crustal thickness and associated magmatic systems. Our findings indicate that the Proterozoic was characterized by thicker crustal sections (>40–50 km) relative to the Phanerozoic and Archean (<35 km). This period of crustal thickening appears at the confluence of major changes on Earth, marked by the onset of mantle cooling and Plate Tectonics and the assembly of Columbia, the first supercontinent.
Collapse
|
14
|
Earth tectonics as seen by GOCE - Enhanced satellite gravity gradient imaging. Sci Rep 2018; 8:16356. [PMID: 30397250 PMCID: PMC6218487 DOI: 10.1038/s41598-018-34733-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
Curvature components derived from satellite gravity gradients provide new global views of Earth’s structure. The satellite gravity gradients are based on the GOCE satellite mission and we illustrate by curvature images how the Earth is seen differently compared to seismic imaging. Tectonic domains with similar seismic characteristic can exhibit distinct differences in satellite gravity gradients maps, which points to differences in the lithospheric build-up. This is particularly apparent for the cratonic regions of the Earth. The comparisons demonstrate that the combination of seismological, and satellite gravity gradient imaging has significant potential to enhance our knowledge of Earth’s structure. In remote frontiers like the Antarctic continent, where even basic knowledge of lithospheric scale features remains incomplete, the curvature images help unveil the heterogeneity in lithospheric structure, e.g. between the composite East Antarctic Craton and the West Antarctic Rift System.
Collapse
|
15
|
Cawood PA, Hawkesworth CJ, Pisarevsky SA, Dhuime B, Capitanio FA, Nebel O. Geological archive of the onset of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0405. [PMID: 30275157 PMCID: PMC6189553 DOI: 10.1098/rsta.2017.0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 05/02/2023]
Abstract
Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of sea-floor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780-2710 Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700-2440 Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Peter A Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
- Department of Earth Sciences, University of St Andrews, St Andrews, Fife KY16 9AL, UK
| | - Chris J Hawkesworth
- Department of Earth Sciences, University of St Andrews, St Andrews, Fife KY16 9AL, UK
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Sergei A Pisarevsky
- ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Bruno Dhuime
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
- CNRS-UMR 5243, Géosciences Montpellier, Université de Montpellier, Montpellier, France
| | - Fabio A Capitanio
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Oliver Nebel
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
16
|
Jolivet L, Faccenna C, Becker T, Tesauro M, Sternai P, Bouilhol P. Mantle Flow and Deforming Continents: From India-Asia Convergence to Pacific Subduction. TECTONICS 2018; 37:2887-2914. [PMID: 31007341 PMCID: PMC6472563 DOI: 10.1029/2018tc005036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023]
Abstract
The formation of mountain belts or rift zones is commonly attributed to interactions between plates along their boundaries, but the widely distributed deformation of Asia from Himalaya to the Japan Sea and other back-arc basins is difficult to reconcile with this notion. Through comparison of the tectonic and kinematic records of the last 50 Ma with seismic tomography and anisotropy models, we show that the closure of the former Tethys Ocean and the extensional deformation of East Asia can be best explained if the asthenospheric mantle transporting India northward, forming the Himalaya and the Tibetan Plateau, reaches East Asia where it overrides the westward flowing Pacific mantle and contributes to subduction dynamics, distributing extensional deformation over a 3,000-km wide region. This deep asthenospheric flow partly controls the compressional stresses transmitted through the continent-continent collision, driving crustal thickening below the Himalayas and Tibet and the propagation of strike-slip faults across Asian lithosphere further north and east, as well as with the lithospheric and crustal flow powered by slab retreat east of the collision zone below East and SE Asia. The main shortening direction in the deforming continent between the collision zone and the Pacific subduction zones may in this case be a proxy for the direction of flow in the asthenosphere underneath, which may become a useful tool for studying mantle flow in the distant past. Our model of the India-Asia collision emphasizes the role of asthenospheric flow underneath continents and may offer alternative ways of understanding tectonic processes.
Collapse
Affiliation(s)
- Laurent Jolivet
- Sorbonne Université, CNRS‐INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193ParisFrance
| | | | - Thorsten Becker
- UTIGUniversity of Texas at AustinAustinTXUSA
- DGSUniversity of Texas at AustinAustinTXUSA
- JSGUniversity of Texas at AustinAustinTXUSA
| | - Magdala Tesauro
- Dipartimento di Matematica e GeoscienzeUniversita degli studi di TriesteTriesteItaly
| | - Pietro Sternai
- Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
| | | |
Collapse
|
17
|
Role of Volcano-Sedimentary Basins in the Formation of Greenstone-Granitoid Belts in the West African Craton: A Numerical Model. MINERALS 2018. [DOI: 10.3390/min8020073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Comparison of γ-ray spectrometry and ICP-MS methods for measuring radioactive heat-producing elements of rocks: a case study on borehole samples from the Sichuan Basin, China. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5576-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Archean komatiite volcanism controlled by the evolution of early continents. Proc Natl Acad Sci U S A 2014; 111:10083-8. [PMID: 24958873 DOI: 10.1073/pnas.1400273111] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.
Collapse
|
20
|
Abstract
AbstractThe Sundaland core of SE Asia is a heterogeneous assemblage of Tethyan sutures and Gondwana fragments. Its complex basement structure was one major influence on Cenozoic tectonics; the rifting history of the north Australian margin was another. Fragments that rifted from Australia in the Jurassic collided with Sundaland in the Cretaceous and terminated subduction. From 90 to 45 Ma Sundaland was largely surrounded by inactive margins with localized strike-slip deformation, extension and subduction. At 45 Ma Australia began to move north, and subduction resumed beneath Sundaland. At 23 Ma the Sula Spur promontory collided with the Sundaland margin. From 15 Ma there was subduction hinge rollback into the Banda oceanic embayment, major extension, and later collision of the Banda volcanic arc with the southern margin of the embayment. However, this plate tectonic framework cannot be reduced to a microplate scale to explain Cenozoic deformation. Sundaland has a weak thin lithosphere, highly responsive to plate boundary forces and a hot weak deep crust has flowed in response to tectonic and topographic forces, and sedimentary loading. Gravity-driven movements of the upper crust, unusually rapid vertical motions, exceptionally high rates of erosion, and massive movements of sediment have characterized this region.
Collapse
Affiliation(s)
- Robert Hall
- SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK (e-mail: )
| |
Collapse
|
21
|
Mooney WD, Kaban MK. The North American upper mantle: Density, composition, and evolution. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jb000866] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Thybo H, Nielsen CA. Magma-compensated crustal thinning in continental rift zones. Nature 2009; 457:873-6. [PMID: 19212408 DOI: 10.1038/nature07688] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 12/09/2008] [Indexed: 11/09/2022]
Abstract
Continental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of sedimentary basins around failed rift structures.
Collapse
Affiliation(s)
- H Thybo
- Department of Geography and Geology, University of Copenhagen, Oester Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | | |
Collapse
|
23
|
Tassara A, Götze HJ, Schmidt S, Hackney R. Three-dimensional density model of the Nazca plate and the Andean continental margin. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jb003976] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
|
25
|
Pérez-Gussinyé M, Watts AB. The long-term strength of Europe and its implications for plate-forming processes. Nature 2005; 436:381-4. [PMID: 16034416 DOI: 10.1038/nature03854] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 05/18/2005] [Indexed: 11/08/2022]
Abstract
Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness and composition, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the 'Bouguer coherence' method yields large Te values (> 60 km) whereas the 'free-air admittance' method yields low values (< 25 km). Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (> or = 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history.
Collapse
Affiliation(s)
- M Pérez-Gussinyé
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3PR, UK.
| | | |
Collapse
|
26
|
|
27
|
Hemant K, Maus S. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jb003837] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Hall R, Morley CK. Sundaland basins. CONTINENT-OCEAN INTERACTIONS WITHIN EAST ASIAN MARGINAL SEAS 2004. [DOI: 10.1029/149gm04] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Nielsen L, Thybo H. The origin of teleseismicPnwaves: Multiple crustal scattering of upper mantle whispering gallery phases. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003jb002487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- L. Nielsen
- Geological Institute; University of Copenhagen; Copenhagen Denmark
| | - H. Thybo
- Geological Institute; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
30
|
Wang Y, Mooney WD, Yuan X, Coleman RG. The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jb000552] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Youxue Wang
- China University of Geoscience; Beijing China
- U.S. Geological Survey; Menlo Park California USA
| | | | | | - Robert G. Coleman
- Department of Geology and Environmental Sciences; Stanford University; Stanford California USA
| |
Collapse
|
31
|
Goes S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000jb000049] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
|
33
|
Abstract
AbstractLithosphere that formed in Archaean and possibly early Proterozoic time is thicker, more buoyant, and geochemically distinct from lithosphere that formed after about 2.3 Ga. Mantle xenolith and seismic data indicate that some cratonic roots, or ‘keels’, extend to depths of c. 250 km, compared with normal continental lithosphere of thickness 150 km or less; yet many cratons have experienced uplift, dyking and kimberlite emplacement, suggesting interactions with hot, rising asthenosphere referred to as mantle plumes. Plumes supply additional heat to the base of the lithospheric plates, whose base can be heated and entrained in the flow (thermal erosion). How have these cratonic keels persisted despite their interactions with mantle plumes? The geometry of cratonic keels during their interactions with mantle plumes is a critical factor controlling keel preservation. To a laterally spreading plume head, cratonic keels appear as major obstacles, and the hot, buoyant plume material ponds beneath thinner lithosphere. Our model simulations show that deep keels deflect mantle plume material and that steep gradients at the lithosphere-asthenosphere boundary between Archaean keels and ‘normal’ lithosphere will focus flow, leading to localized adiabatic decompression melting. Plume processes can lead to a reduction in the breadth of a cratonic root where the plume rises beneath the craton, regardless of the initial breadth of the craton. Where the plume rises beneath a craton the hot plume material will spread laterally beneath the keel and attain thicknesses of tens of kilometres. This transfers heat to the base of the lithosphere and could generate small volumes of melt at considerable depth, depending on the composition of the lower lithosphere. We have used model simulations of plumes beneath Africa to predict the magnitude and direction of seismic anisotropy caused by lateral flow of hot plume material beneath and around a cratonic keel. The shear-wave splitting in our models is greatest at the edge of the cratonic keel, and its azimuth is parallel to the plume flow direction.
Collapse
Affiliation(s)
- N. H. Sleep
- Department of Geophysics, Mitchell Building, Stanford University
Stanford, CA 94305, USA
| | - C. J. Ebinger
- Department of Geology, Royal Holloway, University of London
Egham TW20 0EX, UK
| | - J.-M. Kendall
- School of Earth Sciences, University of Leeds
Leeds LS2 9JT, UK
| |
Collapse
|