1
|
Miming Z, Sun H, Zhang J, Wu Y, Gao Z, Zhan L, Yan J, Li J. Relationships among the climate-relevant gases during the Southern Ocean bloom season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169887. [PMID: 38185175 DOI: 10.1016/j.scitotenv.2024.169887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The ocean plays an essential role in regulating the sources and sinks of climate-relevant gases, like CO2, N2O and dimethyl sulfide (DMS), thus influencing global climate change. Although the Southern Ocean is known to be a strong carbon sink, a significant DMS source and possibly a large source of N2O, our understanding of the interaction among these climate-relevant gases and their potential impacts on climate change is still insufficient in the Southern Ocean. Herein, we analyzed parameters, including surface water pCO2, dissolved inorganic carbon (DIC), alkalinity (TA), DMS and N2O in the water column, collected during the austral summer of 2015-2016 in the 32nd Chinese Antarctic Research Expedition (CHINARE) at the tip of Antarctic Peninsula. A positive correlation between DMS and pCO2 (indicated by deficit of DIC, ∆DIC, refer to values in 100 m) was observed in waters above 75 m, whereas no correlation between N2O saturation anomaly (SA) and DMS, ∆DIC was found. In the area with stable stratification with phytoplankton bloom, significant DMS source and strong CO2 uptake with weak N2O emission were observed. Conversely, strong mixing or upwelling area was shown to be a strong marine CO2 source and significant N2O release with weak DMS source.
Collapse
Affiliation(s)
- Zhang Miming
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources (MNR), Third Institute of Oceanography, MNR, Siming District, Xiamen, Fujian 361005, China; Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou, Guangdong, China.
| | - Heng Sun
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources (MNR), Third Institute of Oceanography, MNR, Siming District, Xiamen, Fujian 361005, China
| | - Jiexia Zhang
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources (MNR), Third Institute of Oceanography, MNR, Siming District, Xiamen, Fujian 361005, China
| | - Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhongyong Gao
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources (MNR), Third Institute of Oceanography, MNR, Siming District, Xiamen, Fujian 361005, China
| | - Liyang Zhan
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources (MNR), Third Institute of Oceanography, MNR, Siming District, Xiamen, Fujian 361005, China
| | - Jinpei Yan
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources (MNR), Third Institute of Oceanography, MNR, Siming District, Xiamen, Fujian 361005, China
| | - Jing Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China.
| |
Collapse
|
2
|
Transcriptome response of Antarctic Phaeodactylum tricornutum ICE-H producing dimethylsulphoniopropionate to hypersaline stress. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Sow SLS, Brown MV, Clarke LJ, Bissett A, van de Kamp J, Trull TW, Raes EJ, Seymour JR, Bramucci AR, Ostrowski M, Boyd PW, Deagle BE, Pardo PC, Sloyan BM, Bodrossy L. Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environ Microbiol 2022; 24:2449-2466. [PMID: 35049099 PMCID: PMC9303206 DOI: 10.1111/1462-2920.15906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
We investigated the Southern Ocean (SO) prokaryote community structure via zero‐radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71–99°E, summer) and Pacific (170–174°W, autumn‐winter) sectors of the SO. At higher taxonomic levels (phylum‐family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus‐zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi‐ and bathy‐abyssopelagic water masses. Common surface bacteria were abundant in several deep‐water masses and vice‐versa suggesting connectivity between surface and deep‐water microbial assemblages. Bacteria from same‐sector Antarctic Bottom Water samples showed patchy, high beta‐diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep‐water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide‐scale SO ecosystem microbial modelling.
Collapse
Affiliation(s)
- Swan L S Sow
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, New South Wales, 2308, Australia
| | - Laurence J Clarke
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia.,Australian Antarctic Division, Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Thomas W Trull
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Eric J Raes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Bruce E Deagle
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania, 7050, Australia.,National Collections & Marine Infrastructure, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Paula C Pardo
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Bernadette M Sloyan
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
4
|
Jang E, Park KT, Yoon YJ, Kim K, Gim Y, Chung HY, Lee K, Choi J, Park J, Park SJ, Koo JH, Fernandez RP, Saiz-Lopez A. First-year sea ice leads to an increase in dimethyl sulfide-induced particle formation in the Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150002. [PMID: 34482143 DOI: 10.1016/j.scitotenv.2021.150002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl sulfide (DMS) produced by marine algae represents the largest natural emission of sulfur to the atmosphere. The oxidation of DMS is a key process affecting new particle formation that contributes to the radiative forcing of the Earth. In this study, atmospheric DMS and its major oxidation products (methanesulfonic acid, MSA; non-sea-salt sulfate, nss-SO42-) and particle size distributions were measured at King Sejong station located in the Antarctic Peninsula during the austral spring-summer period in 2018-2020. The observatory was surrounded by open ocean and first-year and multi-year sea ice. Importantly, oceanic emissions and atmospheric oxidation of DMS showed distinct differences depending on source regions. A high mixing ratio of atmospheric DMS was observed when air masses were influenced by the open ocean and first-year sea ice due to the abundance of DMS producers such as pelagic phaeocystis and ice algae. However, the concentrations of MSA and nss-SO42- were distinctively increased for air masses originating from first-year sea ice as compared to those originating from the open ocean and multi-year sea ice, suggesting additional influences from the source regions of atmospheric oxidants. Heterogeneous chemical processes that actively occur over first-year sea ice tend to accelerate the release of bromine monoxide (BrO), which is the most efficient DMS oxidant in Antarctica. Model-estimates for surface BrO confirmed that high BrO mixing ratios were closely associated with first-year sea ice, thus enhancing DMS oxidation. Consequently, the concentration of newly formed particles originated from first-year sea ice, which was a strong source area for both DMS and BrO was greater than from open ocean (high DMS but low BrO). These results indicate that first-year sea ice plays an important yet overlooked role in DMS-induced new particle formation in polar environments, where warming-induced sea ice changes are pronounced.
Collapse
Affiliation(s)
- Eunho Jang
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea
| | - Ki-Tae Park
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea.
| | | | - Kitae Kim
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea
| | - Yeontae Gim
- Korea Polar Research Institute, Incheon, South Korea
| | - Hyun Young Chung
- Korea Polar Research Institute, Incheon, South Korea; University of Science and Technology, Daejeon, South Korea
| | - Kitack Lee
- Department of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinhee Choi
- Korea Polar Research Institute, Incheon, South Korea
| | - Jiyeon Park
- Korea Polar Research Institute, Incheon, South Korea
| | | | - Ja-Ho Koo
- Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
| | - Rafael P Fernandez
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
5
|
Variability of Antarctic sea ice extent over the past 200 years. Sci Bull (Beijing) 2021; 66:2394-2404. [PMID: 36654125 DOI: 10.1016/j.scib.2021.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/03/2023]
Abstract
While Arctic sea ice has been decreasing in recent decades that is largely due to anthropogenic forcing, the extent of Antarctic sea ice showed a positive trend during 1979-2015, followed by an abrupt decrease. The shortness of the satellite record limits our ability to quantify the possible contribution of anthropogenic forcing and internal variability to the observed Antarctic sea ice variability. In this study, ice core and fast ice records with annual resolution from six sites are used to reconstruct the annual-resolved northernmost latitude of sea ice edge (NLSIE) for different sectors of the Southern Ocean, including the Weddell Sea (WS), Bellingshausen Sea (BS), Amundsen Sea (AS), Ross Sea (RS), and the Indian and western Pacific Ocean (IndWPac). The linear trends of the NLSIE are analyzed for each sector for the past 100-200 years and found to be -0.08°, -0.17°, +0.07°, +0.02°, and -0.03° per decade (≥95% confidence level) for the WS, BS, AS, RS, and IndWPac, respectively. For the entire Antarctic, our composite NLSIE shows a decreasing trend (-0.03° per decade, 99% confidence level) during the 20th century, with a rapid decline in the mid-1950s. It was not until the early 1980s that the observed increasing trend occurred. A comparison with major climate indices shows that the long-term linear trends in all five sectors are largely dominated by the changes in the Southern Annular Mode (SAM). The multi-decadal variability in WS, BS, and AS is dominated by the Interdecadal Pacific Oscillation, whereas that in the IndWPac and RS is dominated by the SAM.
Collapse
|
6
|
Jackson RL, Gabric AJ, Cropp R. Coral reefs as a source of climate-active aerosols. PeerJ 2020; 8:e10023. [PMID: 33062438 PMCID: PMC7531332 DOI: 10.7717/peerj.10023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
We review the evidence for bio-regulation by coral reefs of local climate through stress-induced emissions of aerosol precursors, such as dimethylsulfide. This is an issue that goes to the core of the coral ecosystem’s ability to maintain homeostasis in the face of increasing climate change impacts and other anthropogenic pressures. We examine this through an analysis of data on aerosol emissions by corals of the Great Barrier Reef, Australia. We focus on the relationship with local stressors, such as surface irradiance levels and sea surface temperature, both before and after notable coral bleaching events. We conclude that coral reefs may be able to regulate their exposure to environmental stressors through modification of the optical properties of the atmosphere, however this ability may be impaired as climate change intensifies.
Collapse
Affiliation(s)
- Rebecca L Jackson
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| | - Albert J Gabric
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
7
|
Antarctic Sea Ice Proxies from Marine and Ice Core Archives Suitable for Reconstructing Sea Ice over the Past 2000 Years. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9120506] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dramatic changes in sea ice have been observed in both poles in recent decades. However, the observational period for sea ice is short, and the climate models tasked with predicting future change in sea ice struggle to capture the current Antarctic trends. Paleoclimate archives, from marine sedimentary records and coastal Antarctic ice cores, provide a means of understanding sea ice variability and its drivers over decadal to centennial timescales. In this study, we collate published records of Antarctic sea ice over the past 2000 years (2 ka). We evaluate the current proxies and explore the potential of combining marine and ice core records to produce multi-archive reconstructions. Despite identifying 92 sea ice reconstructions, the spatial and temporal resolution is only sufficient to reconstruct circum-Antarctic sea ice during the 20th century, not the full 2 ka. Our synthesis reveals a 90 year trend of increasing sea ice in the Ross Sea and declining sea ice in the Bellingshausen, comparable with observed trends since 1979. Reconstructions in the Weddell Sea, the Western Pacific and the Indian Ocean reveal small negative trends in sea ice during the 20th century (1900–1990), in contrast to the observed sea ice expansion in these regions since 1979.
Collapse
|
8
|
Complete genome sequence of Rhodococcus sp. NJ-530, a DMSP-degrading actinobacterium isolated from Antarctic sea ice. 3 Biotech 2019; 9:363. [PMID: 31576282 DOI: 10.1007/s13205-019-1889-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022] Open
Abstract
Dimethylsulfide (DMS), a climatically important gas generated by dimethylsulfoniopropionate (DMSP) degradation, plays an important role in the global sulfur cycle and affects the global climate. Marine bacteria are the primary mediators of DMSP degradation and DMS production. Here, we present the complete genome sequence of Rhodococcus sp. NJ-530, isolated from Antarctic sea ice, which utilizes DMSP as a sole carbon and energy source, degrading DMSP into DMS. The genome of strain NJ-530 consists of 7371 protein-coding sequences (CDSs) with 54 tRNA genes and 15 rRNA operons as 5S-16S-23S rRNA. The strain has one circular chromosome of 6,408,544 bp with 6331 CDSs and 62.41% GC content. Genomic annotation revealed that Rhodococcus sp. NJ-530 may have a DMSP cleavage gene cluster, including dddD, dddB and dddC, suggesting the existence of the DddD-type DMSP cleavage pathway. The complete genome sequence of Rhodococcus sp. NJ-530 will provide useful information for better understanding of the molecular mechanism underlying marine DMSP degradation and Antarctic DMS production.
Collapse
|
9
|
King ACF, Thomas ER, Pedro JB, Markle B, Potocki M, Jackson SL, Wolff E, Kalberer M. Organic Compounds in a Sub-Antarctic Ice Core: A Potential Suite of Sea Ice Markers. GEOPHYSICAL RESEARCH LETTERS 2019; 46:9930-9939. [PMID: 31762520 PMCID: PMC6853201 DOI: 10.1029/2019gl084249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 05/26/2023]
Abstract
Investigation of organic compounds in ice cores can potentially unlock a wealth of new information in these climate archives. We present results from the first ever ice core drilled on sub-Antarctic island Bouvet, representing a climatologically important but understudied region. We analyze a suite of novel and more familiar organic compounds in the ice core, alongside commonly measured ions. Methanesulfonic acid shows a significant, positive correlation to winter sea ice concentration, as does a fatty acid compound, oleic acid. Both may be sourced from spring phytoplankton blooms, which are larger following greater sea ice extent in the preceding winter. Oxalate, formate, and acetate are positively correlated to sea ice concentration in summer, but sources of these require further investigation. This study demonstrates the potential application of organic compounds from the marine biosphere in generating multiproxy sea ice records, which is critical in improving our understanding of past sea ice changes.
Collapse
Affiliation(s)
- A. C. F. King
- British Antarctic SurveyCambridgeUK
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | | | - J. B. Pedro
- Antarctic Climate and EcosystemsUniversity of TasmaniaHobartTasmaniaAustralia
- Physics of Ice, Climate and Earth, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
| | - B. Markle
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - M. Potocki
- Climate Change InstituteUniversity of MaineOronoMEUSA
- School of Earth and Climate SciencesUniversity of MaineOronoMEUSA
| | - S. L. Jackson
- British Antarctic SurveyCambridgeUK
- Now at: Research School of Earth SciencesAustralian National UniversityCanberraACTAustralia
| | - E. Wolff
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - M. Kalberer
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
10
|
Lim S, Lee M, Rhee TS. Chemical characteristics of submicron aerosols observed at the King Sejong Station in the northern Antarctic Peninsula from fall to spring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1310-1316. [PMID: 31018470 DOI: 10.1016/j.scitotenv.2019.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The water-soluble ions and carbonaceous compounds of PM1 were measured at the King Sejong Station (KSG) in the northern part of Antarctic Peninsula from March to November in 2009. As the sum of all measured species including organic matter [OM; organic carbon (OC)*1.9], the PM1 mass reached a maximum of 936 ng m-3 with the mean of 686 ± 226 ng m-3. The most abundant constituents were OM (389 ± 109 ng m-3) and sea-salts (Na+ and Cl-, 193 ± 122 ng m-3), which comprised 85% of the PM1 mass. In contrast, the contribution of SO42- was below 1% and its depletion relative to Na+ was prevalent particularly during winter, which was attributed to the frost flowers on newly formed sea-ice surface. The OC concentration was the highest in fall and its subcomponents OC2 and OC3 were moderately correlated with sea-salts (r = 0.5), indicating the marine biogenic source for OC. The elemental carbon (EC) concentration was much lower than OC, leading to the mean OC/EC ratio over 10. While the charred fraction of EC (EC1) was elevated by the long-range transport of biomass burning plume from nearby continent, the mass fraction of soot-EC (EC23) was increased concurrently with enhanced NO3-, suggesting EC23 as a good indicator for local influence in pristine environments like Antarctic region.
Collapse
Affiliation(s)
- Saehee Lim
- Dept. of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | - Meehye Lee
- Dept. of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| | - Tae Siek Rhee
- Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
11
|
Alarcón-Schumacher T, Guajardo-Leiva S, Antón J, Díez B. Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula. Front Microbiol 2019; 10:1014. [PMID: 31139164 PMCID: PMC6527751 DOI: 10.3389/fmicb.2019.01014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated by Myoviridae family (∼82% of the total assigned reads), changed to become dominated by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA members of the Phycodnaviridae (∼50%) and diatom infecting ssRNA viruses (∼38%), becoming more significant as chlorophyll a increased. A genomic and phylogenetic characterization allowed the identification of a new viral lineage within the Myoviridae family. This new lineage of viruses infects Pseudoalteromonas and was dominant in the phage community. In addition, a new Phycodnavirus (PaV) was described, which is predicted to infect Phaeocystis antarctica, the main blooming haptophyte in the SO. This work was able to identify the changes in the main viral players during a bloom development and suggests that the changes observed in the virioplankton could be used as a model to understand the development and decay of blooms that occur throughout the WAP.
Collapse
Affiliation(s)
- Tomás Alarcón-Schumacher
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
| |
Collapse
|
12
|
Extreme spikes in DMS flux double estimates of biogenic sulfur export from the Antarctic coastal zone to the atmosphere. Sci Rep 2019; 9:2233. [PMID: 30783182 PMCID: PMC6381205 DOI: 10.1038/s41598-019-38714-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 11/08/2022] Open
Abstract
Biogenic dimethylsulfide (DMS) is a significant contributor to sulfur flux from the oceans to the atmosphere, and the most significant source of aerosol non sea-salt sulfate (NSS-SO42-), a key regulator of global climate. Here we present the longest running time-series of DMS-water (DMSW) concentrations in the world, obtained at the Rothera Time-Series (RaTS) station in Ryder Bay, West Antarctic Peninsula (WAP). We demonstrate the first ever evaluation of interseasonal and interannual variability in DMSW and associated flux to the atmosphere from the Antarctic coastal zone and determine the scale and importance of the region as a significant source of DMS. Impacts of climate modes such as El Niňo/Southern Oscillation are evaluated. Maximum DMSW concentrations occurred annually in January and were primarily associated with sea-ice break-up. These concentrations resulted in extremely high (up to 968 µmol m-2 d-1) DMS flux over short timescales, which are not parameterised in global-scale DMS climatologies. Calculated DMS flux stayed above the aerosol nucleation threshold of 2.5 µmol m-2 d-1 for 60% of the year. Overall, using flux determinations from this study, the total flux of DMS-sulfur from the Austral Polar Province (APLR) was 1.1 Tg sulfur yr-1, more than double the figure suggested by the most recent DMS climatologies.
Collapse
|
13
|
Jackson R, Gabric A, Cropp R. Effects of ocean warming and coral bleaching on aerosol emissions in the Great Barrier Reef, Australia. Sci Rep 2018; 8:14048. [PMID: 30232386 PMCID: PMC6145874 DOI: 10.1038/s41598-018-32470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
It is proposed that emissions of volatile sulfur compounds by coral reefs contribute to the formation of a biologically-derived feedback on sea surface temperature (SST) through the formation of marine biogenic aerosol (MBA). The direction and strength of this feedback remains uncertain and constitutes a fundamental constraint on predicting the ability of corals to cope with future ocean warming. We investigate the effects of elevated SST and irradiance on satellite-derived fine-mode aerosol optical depth (AOD) throughout the Great Barrier Reef, Australia (GBR) over an 18-year time period. AOD is positively correlated with SST and irradiance and increases two-fold during spring and summer with high frequency variability. As the influence of non-biogenic and distant aerosol sources are found to be negligible, the results support recent findings that the 2,300 km stretch of coral reefs can be a substantial source of biogenic aerosol and thus, influence local ocean albedo. Importantly however, a tipping point in the coral stress response is identified, whereby thermal stress reaches a point that exceeds the capacity of corals to influence local atmospheric properties. Beyond this point, corals may become more susceptible to permanent damage with increasing stress, with potential implications for mass coral bleaching events.
Collapse
Affiliation(s)
- Rebecca Jackson
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia.
- Australian Rivers Institute, Griffith University, Gold Coast, 4222, Australia.
| | - Albert Gabric
- Australian Rivers Institute, Griffith University, Gold Coast, 4222, Australia
- School of Environment and Science, Griffith University, Nathan, 4111, Australia
| | - Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
14
|
Jiang J, Chen S, Li M, Li H, Chen Y. Selective Determination of Dimethyl Sulfide in Seawater Using Reactive Extractive Electrospray Ionization Mass Spectrometry. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1199559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Songhui Chen
- China National Supervision and Testing Center of Fine Chemicals, Product Quality Supervising and Inspecting Institute of Taizhou City, Taizhou, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yan Chen
- China National Supervision and Testing Center of Fine Chemicals, Product Quality Supervising and Inspecting Institute of Taizhou City, Taizhou, China
| |
Collapse
|
15
|
Iyadomi S, Ezoe K, Ohira SI, Toda K. Monitoring variations of dimethyl sulfide and dimethylsulfoniopropionate in seawater and the atmosphere based on sequential vapor generation and ion molecule reaction mass spectrometry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:464-472. [PMID: 27046734 DOI: 10.1039/c6em00065g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To monitor the fluctuations of dimethyl sulfur compounds at the seawater/atmosphere interface, an automated system was developed based on sequential injection analysis coupled with vapor generation-ion molecule reaction mass spectrometry (SIA-VG-IMRMS). Using this analytical system, dissolved dimethyl sulfide (DMS(aq)) and dimethylsulfoniopropionate (DMSP), a precursor to DMS in seawater, were monitored together sequentially with atmospheric dimethyl sulfide (DMS(g)). A shift from the equilibrium point between DMS(aq) and DMS(g) results in the emission of DMS to the atmosphere. Atmospheric DMS emitted from seawater plays an important role as a source of cloud condensation nuclei, which influences the oceanic climate. Water samples were taken periodically and dissolved DMS(aq) was vaporized for analysis by IMRMS. After that, DMSP was hydrolyzed to DMS and acrylic acid, and analyzed in the same manner as DMS(aq). The vaporization behavior and hydrolysis of DMSP to DMS were investigated to optimize these conditions. Frequent (every 30 min) determination of the three components, DMS(aq)/DMSP (nanomolar) and DMS(g) (ppbv), was carried out by SIA-VG-IMRMS. Field analysis of the dimethyl sulfur compounds was undertaken at a coastal station, which succeeded in showing detailed variations of the compounds in a natural setting. Observed concentrations of the dimethyl sulfur compounds both in the atmosphere and seawater largely changed with time and similar variations were repeatedly observed over several days, suggesting diurnal variations in the DMS flux at the seawater/atmosphere interface.
Collapse
Affiliation(s)
- Satoshi Iyadomi
- Department of Chemistry, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan.
| | | | | | | |
Collapse
|
16
|
Abram NJ, Mulvaney R, Arrowsmith C. Environmental signals in a highly resolved ice core from James Ross Island, Antarctica. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Tison JL, Brabant F, Dumont I, Stefels J. High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jg001427] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Abram NJ, Thomas ER, McConnell JR, Mulvaney R, Bracegirdle TJ, Sime LC, Aristarain AJ. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014644] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Abram NJ, Mulvaney R, Wolff EW, Mudelsee M. Ice core records as sea ice proxies: An evaluation from the Weddell Sea region of Antarctica. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008139] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Preunkert S, Legrand M, Jourdain B, Moulin C, Belviso S, Kasamatsu N, Fukuchi M, Hirawake T. Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products (methanesulfonate and sulfate) at Dumont d'Urville, coastal Antarctica (1999–2003). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007585] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Piel C, Weller R, Huke M, Wagenbach D. Atmospheric methane sulfonate and non-sea-salt sulfate records at the European Project for Ice Coring in Antarctica (EPICA) deep-drilling site in Dronning Maud Land, Antarctica. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006213] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Riedel K. Discrepancies between formaldehyde measurements and methane oxidation model predictions in the Antarctic troposphere: An assessment of other possible formaldehyde sources. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jd005859] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Curran MAJ, van Ommen TD, Morgan VI, Phillips KL, Palmer AS. Ice Core Evidence for Antarctic Sea Ice Decline Since the 1950s. Science 2003; 302:1203-6. [PMID: 14615537 DOI: 10.1126/science.1087888] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The instrumental record of Antarctic sea ice in recent decades does not reveal a clear signature of warming despite observational evidence from coastal Antarctica. Here we report a significant correlation (P < 0.002) between methanesulphonic acid (MSA) concentrations from a Law Dome ice core and 22 years of satellite-derived sea ice extent (SIE) for the 80 degrees E to 140 degrees E sector. Applying this instrumental calibration to longer term MSA data (1841 to 1995 A.D.) suggests that there has been a 20% decline in SIE since about 1950. The decline is not uniform, showing large cyclical variations, with periods of about 11 years, that confuse trend detection over the relatively short satellite era.
Collapse
Affiliation(s)
- Mark A J Curran
- Department of the Environment and Heritage, Australian Antarctic Division, and Antarctic Climate and Ecosystem Cooperative Research Centre, Private Bag 80, Hobart, Tasmania 7001, Australia.
| | | | | | | | | |
Collapse
|
24
|
Cosme E, Genthon C, Martinerie P, Boucher O, Pham M. The sulfur cycle at high-southern latitudes in the LMD-ZT General Circulation Model. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2002jd002149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. Cosme
- Laboratoire de Glaciologie et Géophysique de l'Environnement; CNRS/OSUG; Saint-Martin-d'Hères France
| | - C. Genthon
- Laboratoire de Glaciologie et Géophysique de l'Environnement; CNRS/OSUG; Saint-Martin-d'Hères France
| | - P. Martinerie
- Laboratoire de Glaciologie et Géophysique de l'Environnement; CNRS/OSUG; Saint-Martin-d'Hères France
| | - O. Boucher
- Laboratoire d'Optique Atmosphérique; Université des Sciences et Technologies de Lille, CNRS; Villeneuve d'Ascq France
| | - M. Pham
- Service d'Aronomie; Université Pierre et Marie Curie; Paris France
| |
Collapse
|