1
|
Jansen KT, Browne EC, Tolbert MA. Secondary Brown Carbon Aerosol Resists Bleaching by Ozone under Acidic Conditions. J Phys Chem A 2024. [PMID: 39078128 DOI: 10.1021/acs.jpca.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Light-absorbing organic aerosol (brown carbon, BrC) can affect Earth's radiative balance. However, owing to uncertainties in BrC sources, composition, and lifetime, the radiative impact of BrC is poorly constrained. In particular, the effects of heterogeneous oxidation and the influence of aerosol pH on the lifetime and light absorption properties of BrC are not well established. In a series of laboratory experiments, we characterize the changes in the chemical composition and optical properties of BrC aerosol upon heterogeneous oxidation by ozone (O3). BrC analogs were generated by reacting glyoxal with ammonium sulfate in bulk solutions. The resulting solutions were pH adjusted before being atomized and oxidized in a flow reactor, with online measurements of the aerosol optical and chemical properties to monitor changes from oxidation. For the conditions investigated here, we find that ozonolysis diminishes the ability of BrC material to absorb light, presumably due to the degradation of the BrC chromophores. While the BrC has a lifetime of 1-2 h due to ozonolysis, it effectively stops bleaching after <6 h of atmospheric processing, leaving behind an ozone (O3) resistant fraction of BrC. We observed a pH dependence on oxidation and bleaching with acidic BrC bleaching more slowly and remaining more absorbing than more basic samples. Given that submicron atmospheric aerosols are typically acidic and rapidly undergo partial bleaching, we suggest that the complex refractive index (RI; m) of secondary glyoxal-ammonium BrC should be modeled using data from the recalcitrant fraction of acidic aerosols. This study reports aerosols generated from a pH = 1.51 solution having a RI of m = 1.48 + 1.2 × 10-3 i and m = 1.53 + 2.9 × 10-4 i at 405 and 532 nm, respectively after aging with O3. A comprehensive treatment of BrC lifetime will require this process to be considered in conjunction with other bleaching mechanisms such as photolysis and reactions with OH.
Collapse
Affiliation(s)
- Kevin T Jansen
- Department of Chemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, 216 UCB, Boulder, Colorado 80309, United States
| | - Eleanor C Browne
- Department of Chemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, 216 UCB, Boulder, Colorado 80309, United States
| | - Margaret A Tolbert
- Department of Chemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, 216 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Characterization of Wildfire Smoke over Complex Terrain Using Satellite Observations, Ground-Based Observations, and Meteorological Models. REMOTE SENSING 2022. [DOI: 10.3390/rs14102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The severity of wildfires is increasing globally. In this study, we used data from the Global Change Observation Mission-Climate/Second-generation Global Imager (GCOM-C/SGLI) to characterize the biomass burning aerosols that are generated by large-scale wildfires. We used data from the September 2020 wildfires in western North America. The target area had a complex topography, comprising a basin among high mountains along a coastal region. The SGLI was essential for dealing with the complex topographical changes in terrain that we encountered, as it contains 19 polarization channels ranging from near ultraviolet (380 nm and 412 nm) to thermal infrared (red at 674 nm and near-infrared at 869 nm) and has a fine spatial resolution (1 km). The SGLI also proved to be efficient in the radiative transfer simulations of severe wildfires through the mutual use of polarization and radiance. We used a regional numerical model SCALE (Scalable Computing for Advanced Library and Environment) to account for variations in meteorological conditions and/or topography. Ground-based aerosol measurements in the target area were sourced from the National Aeronautics and Space Administration-Aerosol Robotic Network; currently, official satellite products typically do not provide the aerosol properties for very optically thick cases of wildfires. This paper used satellite observations, ground-based observations, and a meteorological model to define an algorithm for retrieving the aerosol properties caused by severe wildfire events.
Collapse
|
3
|
Spatiotemporal Variations of Aerosol Optical Depth in the Atmosphere over Baikal Region Based on MODIS Data. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper considers spatiotemporal distribution and seasonal variability of aerosol optical depth (AOD) of the atmosphere at the 0.55 μm wavelength in the atmosphere over the Baikal region of Russia based on long-term data (2005–2019) from satellite observations (MODIS/AQUA). A comparison of satellite AOD values with the AERONET record at the Geophysical Observatory of Institute of Solar-Terrestrial Physics of Siberian Brunch of Russian Academy of Science was performed. The results show that interannual AOD variability is mainly due to forest fires. The highest atmospheric transparency was in 2010, 2013 and 2016, and the lowest was in 2008, 2012 and 2014. It is noted that AOD decreased with latitude with a gradient ΔAOD = 0.002 ÷ 0.001 per degree of latitude. The mean seasonal variations in AOD at the six satellite overpass points were characterized by spring (April) and summer (July) highs and low AOD values in autumn. From June to November, the drop in AOD monthly means was more than 60%.
Collapse
|
4
|
Improved Algorithms for Remote Sensing-Based Aerosol Retrieval during Extreme Biomass Burning Events. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study proposed an aerosol characterization process using satellites for severe biomass burning events. In general, these severely hazy cases are labeled as “undecided” or “hazy.” Because atmospheric aerosols are significantly affected by factors such as air quality, global climate change, local environmental risk, and human and biological health, efficient and accurate algorithms for aerosol retrieval are required for global satellite data processing. Our previous classification of aerosol types was based primarily on near-ultraviolet (UV) data, which facilitated subsequent aerosol retrieval. In this study, algorithms for aerosol classification were expanded to events with serious biomass burning aerosols (SBBAs). Once a biomass burning event is identified, the appropriate radiation simulation method can be applied to characterize the SBBAs. The second-generation global imager (SGLI) on board the Japanese mission JAXA/Global Change Observation Mission-Climate contains 19 channels, including red (674 nm) and near-infrared (869 nm) polarization channels with a high resolution of 1 km. Using the large-scale wildfires in Kalimantan, Indonesia in 2019 as an example, the complementarity between the polarization information and the nonpolarized radiance measurements from the SGLI was demonstrated to be effective in radiation simulations for biomass burning aerosol retrieval. The retrieved results were verified using NASA/AERONET ground-based measurements, and then compared against JAXA/SGLI/L2-version-1 products, and JMA/Himawari-8/AHI observations.
Collapse
|
5
|
Study of the Effect of Aerosol Vertical Profile on Microphysical Properties Using GRASP Code with Sun/Sky Photometer and Multiwavelength Lidar Measurements. REMOTE SENSING 2020. [DOI: 10.3390/rs12244072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we study the effect of the vertical distribution of aerosols on the inversion process to obtain microphysical properties of aerosols. The GRASP code is used to retrieve the aerosol size distribution from two different schemes. Firstly, only sun/sky photometer measurements of aerosol optical depth and sky radiances are used as input to the retrieval code, and then, both this information and the range-corrected signals from an advanced lidar system are provided to the code. Measurements taken at the Madrid EARLINET station, complemented with those from the nearby AERONET station, have been analyzed for the 2016–2019 time range. The effect found of the measured vertical profile on the inversion is a shift to smaller radius of the fine mode with average differences of 0.05 ± 0.02 µm, without noticeable effects for the coarse mode radius. This coarse mode is sometimes split into two modes, related to large AOD or elevated aerosol-rich layers. The first scheme´s retrieved size distributions are also compared with those provided by AERONET, observing the unusual persistence of a large mode centered at 5 µm. These changes in the size distributions affect slightly the radiative forcing calculated also by the GRASP code. A stronger forcing, dependent on the AOD, is observed in the second scheme. The shift in the fine mode and the effect on the radiative forcing indicate the importance of considering the vertical profile of aerosols on the retrieval of microphysical properties by remote sensing.
Collapse
|
6
|
The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. REMOTE SENSING 2020. [DOI: 10.3390/rs12182900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.
Collapse
|
7
|
Abstract
The state-of-art satellite observations of atmospheric aerosols over the last two decades from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments have been extensively utilized in climate change and air quality research and applications. The operational algorithms now produce Level 2 aerosol data at varying spatial resolutions (1, 3, and 10 km) and Level 3 data at 1 degree. The local and global applications have benefited from the coarse resolution gridded data sets (i.e., Level 3, 1 degree), as it is easier to use since data volume is low, and several online and offline tools are readily available to access and analyze the data with minimal computing resources. At the same time, researchers who require data at much finer spatial scales have to go through a challenging process of obtaining, processing, and analyzing larger volumes of data sets that require high-end computing resources and coding skills. Therefore, we created a high spatial resolution (high-resolution gridded (HRG), 0.1 × 0.1 degree) daily and monthly aerosol optical depth (AOD) product by combining two MODIS operational algorithms, namely Deep Blue (DB) and Dark Target (DT). The new HRG AODs meet the accuracy requirements of Level 2 AOD data and provide either the same or more spatial coverage on daily and monthly scales. The data sets are provided in daily and monthly files through open an Ftp server with python scripts to read and map the data. The reduced data volume with an easy to use format and tools to access the data will encourage more users to utilize the data for research and applications.
Collapse
|
8
|
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms. REMOTE SENSING 2019. [DOI: 10.3390/rs11050498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have developed a method for evaluating the fidelity of the Aerosol Robotic Network (AERONET) retrieval algorithms by mimicking atmospheric extinction and radiance measurements in a laboratory experiment. This enables radiometric retrievals that use the same sampling volumes, relative humidities, and particle size ranges as observed by other in situ instrumentation in the experiment. We use three Cavity Attenuated Phase Shift (CAPS) monitors for extinction and University of Maryland Baltimore County’s (UMBC) three-wavelength Polarized Imaging Nephelometer (PI-Neph) for angular scattering measurements. We subsample the PI-Neph radiance measurements to angles that correspond to AERONET almucantar scans, with simulated solar zenith angles ranging from 50 ∘ to 77 ∘ . These measurements are then used as input to the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm, which retrieves size distributions, complex refractive indices, single-scatter albedos, and bistatic LiDAR ratios for the in situ samples. We obtained retrievals with residuals less than 8% for about 90 samples. Samples were alternately dried or humidified, and size distributions were limited to diameters of less than 1.0 or 2.5 μ m by using a cyclone. The single-scatter albedo at 532 nm for these samples ranged from 0.59 to 1.00 when computed with CAPS extinction and Particle Soot Absorption Photometer (PSAP) absorption measurements. The GRASP retrieval provided single-scatter albedos that are highly correlated with the in situ single-scatter albedos, and the correlation coefficients ranged from 0.916 to 0.976, depending upon the simulated solar zenith angle. The GRASP single-scatter albedos exhibited an average absolute bias of +0.023–0.026 with respect to the extinction and absorption measurements for the entire dataset. We also compared the GRASP size distributions to aerodynamic particle size measurements, using densities and aerodynamic shape factors that produce extinctions consistent with our CAPS measurements. The GRASP effective radii are highly correlated (R = 0.80) and biased under the corrected aerodynamic effective radii by 1.3% (for a simulated solar zenith angle of θ ∘ = 50 ∘ ); the effective variance indicated a correlation of R = 0.51 and a relative bias of 280%. Finally, our apparatus was not capable of measuring backscatter LiDAR ratios, so we measured bistatic LiDAR ratios at a scattering angle of 173 degrees. The GRASP bistatic LiDAR ratios had correlations of 0.71 to 0.86 (depending upon simulated θ ∘ ) with respect to in situ measurements, positive relative biases of 2–10%, and average absolute biases of 1.8–7.9 sr.
Collapse
|
9
|
Abstract
Radiative effects of absorbing black carbon and mineral dust aerosols are estimated from global aerosol climate model simulations with fixed sea surface temperatures as a boundary condition. Semi-direct effects are approximated as the residual between the total direct radiative effect and the instantaneous direct radiative effect of the simulated absorbing aerosol species. No distinction is made for aerosols from natural and anthropogenic sources. Results for global average are highly uncertain due to high model variability, but consistent with previous estimates. The global average results for black carbon aerosol semi-direct effects are small due to cancellation of regionally positive or negative effects, and may be positive or negative overall, depending on the model setup. The presence of mineral dust aerosol above dark surfaces and below a layer containing black carbon aerosol may enhance the reflectivity and act to enhance the positive radiative effect of black carbon aerosol. When mineral dust is absent the semi-direct effect at the top-of-atmosphere of black carbon aerosol from both anthropogenic and natural sources is −0.03 Wm−2, while averaging to +0.09 Wm−2 if dust is included.
Collapse
|
10
|
Estimation of Optical Properties for HULIS Aerosols at Anmyeon Island, Korea. ATMOSPHERE 2017. [DOI: 10.3390/atmos8070120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Li J, Li X, Carlson BE, Kahn RA, Lacis AA, Dubovik O, Nakajima T. Reducing Multi-sensor Monthly Mean Aerosol Optical Depth Uncertainty Part II: Optimal Locations for Potential Ground Observation Deployments. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; Volume 122:3920-3928. [PMID: 32021740 PMCID: PMC6999660 DOI: 10.1002/2016jd026308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface remote sensing of aerosol properties provides "ground truth" for satellite and model validation, and is an important component of aerosol observation system. Due to the different characteristics of background aerosol variability, information obtained at different locations usually have different spatial representativeness, implying that the location should be carefully chosen so that its measurement could be extended to a greater area. In this study, we present an objective observation array design technique that automatically determines the optimal locations with the highest spatial representativeness based on the Ensemble Kalman Filter (EnKF) theory. The ensemble is constructed using aerosol optical depth (AOD) products from five satellite sensors. The optimal locations are solved sequentially by minimizing the total analysis error variance, which means that observations at these locations will reduce the background error variance to the largest extent. The location determined by the algorithm is further verified to have larger spatial representativeness than some other arbitrary location. In addition to the existing active AERONET sites, the 40 selected optimal locations are mostly concentrated on regions with both high AOD inhomogeneity and its spatial representativeness, namely the Sahel, South Africa, East Asia and North Pacific Islands. These places should be the focuses of establishing future AERONET sites in order to further reduce the uncertainty in the monthly mean AOD. Observations at these locations contribute to approximately 50% of the total background uncertainty reduction.
Collapse
Affiliation(s)
- Jing Li
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China, 100871
| | - Xichen Li
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 100029
| | | | - Ralph A. Kahn
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Oleg Dubovik
- French National Centre for Scientific Research, University Lille 1, France
| | - Teruyuki Nakajima
- Japan Aerospace Exploration Agency, Tsukuba Space Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Li J, Li K, Wang W, Wang J, Peng C, Ge M. Optical properties of secondary organic aerosols derived from long-chain alkanes under various NO x and seed conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1699-1705. [PMID: 27916309 DOI: 10.1016/j.scitotenv.2016.11.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Long-chain alkanes are a type of important intermediate-volatile organic compounds (IVOCs) in the atmosphere, which contribute to a large proportion of secondary organic aerosol (SOA). However, the optical properties of SOA derived from long-chain alkanes remain poorly understood. Here, we investigate the refractive index (RI) of SOA derived from photo-oxidation of dodecane (C12), pentadecane (C15) and heptadecane (C17) under low-NOx and high-NOx conditions with the absence or presence of inorganic aerosol seeds. The RIs of these SOAs are found to be in the range of 1.33 to 1.57 at the wavelength of 532nm. The results from mass spectroscopy indicate that both reaction mechanisms influenced by NOx level and gas-particle partitioning influenced by seeds have important impact on the chemical compositions of SOAs, which further influence the optical properties like RI. Finally, by comparing the RI values to other literature and model results, we suggest that various RIs of SOAs derived from long-chain alkanes should be applied in atmospheric and climate models.
Collapse
Affiliation(s)
- Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jing Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
13
|
Li J, Li X, Carlson BE, Kahn RA, Lacis AA, Dubovik O, Nakajima T. Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:13609-13627. [PMID: 32852483 PMCID: PMC7447153 DOI: 10.1002/2016jd025469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)-based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by ~27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level.
Collapse
Affiliation(s)
- Jing Li
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Xichen Li
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | | | - Ralph A Kahn
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Andrew A Lacis
- NASA Goddard Institute for Space Studies, New York, New York, USA
| | - Oleg Dubovik
- French National Center for Scientific Research, University of Lille 1, Lille, France
| | - Teruyuki Nakajima
- Japan Aerospace Exploration Agency, Tsukuba Space Center, Tsukuba, Japan
| |
Collapse
|
14
|
Kalluri ROR, Gugamsetty B, Kotalo RG, Nagireddy SKR, Tandule CR, Thotli LR, Rajuru Ramakrishna R, Surendranair SB. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1002-1013. [PMID: 27344510 DOI: 10.1016/j.scitotenv.2016.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating.
Collapse
Affiliation(s)
- Raja Obul Reddy Kalluri
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India
| | - Balakrishnaiah Gugamsetty
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India
| | - Rama Gopal Kotalo
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India.
| | - Siva Kumar Reddy Nagireddy
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India
| | - Chakradhar Rao Tandule
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India
| | - Lokeswara Reddy Thotli
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India
| | - Reddy Rajuru Ramakrishna
- Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh, India; Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh, India
| | | |
Collapse
|
15
|
Impact of Coupled NOx/Aerosol Aircraft Emissions on Ozone Photochemistry and Radiative Forcing. ATMOSPHERE 2015. [DOI: 10.3390/atmos6060751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
A Modelling Study of the Impact of On-Road Diesel Emissions on Arctic Black Carbon and Solar Radiation Transfer. ATMOSPHERE 2015. [DOI: 10.3390/atmos6030318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Dai T, Schutgens NAJ, Goto D, Shi G, Nakajima T. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:319-329. [PMID: 25017412 DOI: 10.1016/j.envpol.2014.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only.
Collapse
Affiliation(s)
- Tie Dai
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China; Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan.
| | | | - Daisuke Goto
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Guangyu Shi
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Teruyuki Nakajima
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
18
|
Estimation of biomass burning influence on air pollution around Beijing from an aerosol retrieval model. ScientificWorldJournal 2014; 2014:649648. [PMID: 25250383 PMCID: PMC4163345 DOI: 10.1155/2014/649648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of anthropogenic aerosols and that carbonaceous aerosols from agriculture biomass burning in Southeast Asia also contribute to pollution.
Collapse
|
19
|
Safarpour S, Abdullah K, Lim HS, Dadras M. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1755-1315/20/1/012059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Li K, Wang W, Ge M, Li J, Wang D. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons. Sci Rep 2014; 4:4922. [PMID: 24815734 PMCID: PMC4017213 DOI: 10.1038/srep04922] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/22/2014] [Indexed: 11/09/2022] Open
Abstract
The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38-1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiangjun Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| |
Collapse
|
21
|
Liu P, Zhang Y, Martin ST. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13594-13601. [PMID: 24191734 DOI: 10.1021/es403411e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The complex refractive indices of three different types of secondary organic material (SOM) were obtained for 220 to 1200 nm using a variable angle spectroscopic ellipsometer. Aerosol particles were produced in a flow tube reactor by ozonolysis of volatile organic compounds, including the monoterpenes α-pinene and limonene and the aromatic catechol (benzene-1,2-diol). Optically reflective thin films of SOM were grown by electrostatic precipitation of the aerosol particles onto silicon substrates. The ellipsometry analysis showed that both the real and imaginary components of the refractive indices decreased with increasing wavelength. The real part n(λ) could be parametrized by the three-term form of Cauchy's equation, as follows: n(λ) = B + C/λ(2) + D/λ(4) where λ is the wavelength and B, C, and D are fitting parameters. The real refractive indices of the three SOMs ranged from 1.53 to 1.58, 1.49-1.52, and 1.48-1.50 at 310, 550, and 1000 nm, respectively. The catechol-derived SOM absorbed light in the ultraviolet (UV) range. By comparison, the UV absorption of the monoterpene-derived SOMs was negligible. On the basis of the measured refractive indices, optical properties were modeled for a typical atmospheric particle population. The results suggest that the wavelength dependence of the refractive indices can vary the Angstrom exponent by up to 0.1 across the range 310 to 550 nm. The modeled single-scattering albedo can likewise vary from 0.97 to 0.85 at 310 nm (UV-B). Variability in the optical properties of different types of SOMs can imply important differences in the relative effects of atmospheric particles on tropospheric photochemistry, as well as possible inaccuracies in some satellite-retrieved properties such as optical depth and mode diameter.
Collapse
Affiliation(s)
- Pengfei Liu
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
22
|
|
23
|
Mason BJ, King SJ, Miles REH, Manfred KM, Rickards AMJ, Kim J, Reid JP, Orr-Ewing AJ. Comparison of the Accuracy of Aerosol Refractive Index Measurements from Single Particle and Ensemble Techniques. J Phys Chem A 2012; 116:8547-56. [DOI: 10.1021/jp3049668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bernard J. Mason
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Simon-John King
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Rachael E. H. Miles
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Katherine M. Manfred
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | | | - Jin Kim
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Jonathan P. Reid
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K
| |
Collapse
|
24
|
Zarzana KJ, De Haan DO, Freedman MA, Hasenkopf CA, Tolbert MA. Optical properties of the products of α-dicarbonyl and amine reactions in simulated cloud droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4845-4851. [PMID: 22515474 DOI: 10.1021/es2040152] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Secondary organic aerosol makes up a significant fraction of the total aerosol mass, and a growing body of evidence indicates that reactions in the atmospheric aqueous phase are important contributors to aerosol formation and can help explain observations that cannot be accounted for using traditional gas-phase chemistry. In particular, aqueous phase reactions between small organic molecules have been proposed as a source of light absorbing compounds that have been observed in numerous locations. Past work has established that reactions between α-dicarbonyls and amines in evaporating water droplets produces particle-phase products that are brown in color. In the present study, the complex refractive indices of model secondary organic aerosol formed by aqueous phase reactions between the α-dicarbonyls glyoxal and methylglyoxal and the primary amines glycine and methylamine have been determined. The reaction products exhibit significant absorption in the visible, and refractive indices are similar to those for light absorbing species isolated from urban aerosol. However, the optical properties are different from the values used in models for secondary organic aerosol, which typically assume little to no absorption of visible light. As a result, the climatic cooling effect of such aerosols in models may be overestimated.
Collapse
Affiliation(s)
- Kyle J Zarzana
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0216, USA
| | | | | | | | | |
Collapse
|
25
|
Haapanala P, Räisänen P, Kahnert M, Nousiainen T. Sensitivity of the shortwave radiative effect of dust on particle shape: Comparison of spheres and spheroids. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Ridley DA, Heald CL, Ford B. North African dust export and deposition: A satellite and model perspective. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016794] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Cappa CD, Che DL, Kessler SH, Kroll JH, Wilson KR. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015918] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Drury E, Jacob DJ, Spurr RJD, Wang J, Shinozuka Y, Anderson BE, Clarke AD, Dibb J, McNaughton C, Weber R. Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012629] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Zhang Y, Vijayaraghavan K, Wen XY, Snell HE, Jacobson MZ. Probing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ simulation and evaluation using surface and satellite data. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011898] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Freedman MA, Hasenkopf CA, Beaver MR, Tolbert MA. Optical Properties of Internally Mixed Aerosol Particles Composed of Dicarboxylic Acids and Ammonium Sulfate. J Phys Chem A 2009; 113:13584-92. [DOI: 10.1021/jp906240y] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam A. Freedman
- Cooperative Institute for Research in Environmental Sciences (CIRES), Department of Atmospheric and Oceanic Sciences, and Department of Chemistry and Biochemistry, University of Colorado Boulder, Colorado 80309
| | - Christa A. Hasenkopf
- Cooperative Institute for Research in Environmental Sciences (CIRES), Department of Atmospheric and Oceanic Sciences, and Department of Chemistry and Biochemistry, University of Colorado Boulder, Colorado 80309
| | - Melinda R. Beaver
- Cooperative Institute for Research in Environmental Sciences (CIRES), Department of Atmospheric and Oceanic Sciences, and Department of Chemistry and Biochemistry, University of Colorado Boulder, Colorado 80309
| | - Margaret A. Tolbert
- Cooperative Institute for Research in Environmental Sciences (CIRES), Department of Atmospheric and Oceanic Sciences, and Department of Chemistry and Biochemistry, University of Colorado Boulder, Colorado 80309
| |
Collapse
|
31
|
Hoelzemann JJ, Longo KM, Fonseca RM, do Rosário NME, Elbern H, Freitas SR, Pires C. Regional representativity of AERONET observation sites during the biomass burning season in South America determined by correlation studies with MODIS Aerosol Optical Depth. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010369] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Cavazos C, Todd MC, Schepanski K. Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011078] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Yue X, Wang H, Wang Z, Fan K. Simulation of dust aerosol radiative feedback using the Global Transport Model of Dust: 1. Dust cycle and validation. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010995] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Achtert P, Birmili W, Nowak A, Wehner B, Wiedensohler A, Takegawa N, Kondo Y, Miyazaki Y, Hu M, Zhu T. Hygroscopic growth of tropospheric particle number size distributions over the North China Plain. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010921] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Morcrette JJ, Boucher O, Jones L, Salmond D, Bechtold P, Beljaars A, Benedetti A, Bonet A, Kaiser JW, Razinger M, Schulz M, Serrar S, Simmons AJ, Sofiev M, Suttie M, Tompkins AM, Untch A. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011235] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Turner DD. Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd010054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Todd MC, Bou Karam D, Cavazos C, Bouet C, Heinold B, Baldasano JM, Cautenet G, Koren I, Perez C, Solmon F, Tegen I, Tulet P, Washington R, Zakey A. Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd010476] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Drury E, Jacob DJ, Wang J, Spurr RJD, Chance K. Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009573] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Chen SH, Dudhia J, Kain JS, Kindap T, Tan E. Development of the online MM5 tracer model and its applications to air pollution episodes in Istanbul, Turkey and Sahara dust transport. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Schafer JS, Eck TF, Holben BN, Artaxo P, Duarte AF. Characterization of the optical properties of atmospheric aerosols in Amazônia from long-term AERONET monitoring (1993–1995 and 1999–2006). ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009319] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Pfister GG, Hess PG, Emmons LK, Rasch PJ, Vitt FM. Impact of the summer 2004 Alaska fires on top of the atmosphere clear-sky radiation fluxes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008797] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Popp C, Hauser A, Foppa N, Wunderle S. Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI data and accuracy assessment with ground-based AERONET measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008423] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Hand JL, Malm WC. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008484] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Kishcha P, Alpert P, Shtivelman A, Krichak SO, Joseph JH, Kallos G, Katsafados P, Spyrou C, Gobbi GP, Barnaba F, Nickovic S, Pérez C, Baldasano JM. Forecast errors in dust vertical distributions over Rome (Italy): Multiple particle size representation and cloud contributions. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Liu X, Penner JE, Das B, Bergmann D, Rodriguez JM, Strahan S, Wang M, Feng Y. Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008216] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Santese M, De Tomasi F, Perrone MR. AERONET versus MODIS aerosol parameters at different spatial resolutions over southeast Italy. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007742] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Santese
- National Interuniversity Consortium for Physical Sciences of Matter, Physics Department; University of Lecce; Lecce Italy
| | - F. De Tomasi
- National Interuniversity Consortium for Physical Sciences of Matter, Physics Department; University of Lecce; Lecce Italy
| | - M. R. Perrone
- National Interuniversity Consortium for Physical Sciences of Matter, Physics Department; University of Lecce; Lecce Italy
| |
Collapse
|
47
|
Todd MC, Washington R, Martins JV, Dubovik O, Lizcano G, M'Bainayel S, Engelstaedter S. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007170] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Mélin F, Clerici M, Zibordi G, Bulgarelli B. Aerosol variability in the Adriatic Sea from automated optical field measurements and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007226] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Liu L, Lacis AA, Carlson BE, Mishchenko MI, Cairns B. Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground-based measurements: A comparison study. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007334] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
De Tomasi F, Tafuro AM, Perrone MR. Height and seasonal dependence of aerosol optical properties over southeast Italy. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006779] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. De Tomasi
- CNISM, Dipartimento di Fisica; Università di Lecce; Lecce Italy
| | - A. M. Tafuro
- CNISM, Dipartimento di Fisica; Università di Lecce; Lecce Italy
| | - M. R. Perrone
- CNISM, Dipartimento di Fisica; Università di Lecce; Lecce Italy
| |
Collapse
|