1
|
Bland MT, Elder CM. Silicate Volcanism on Europa's Seafloor and Implications for Habitability. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL096939. [PMID: 35866068 PMCID: PMC9286870 DOI: 10.1029/2021gl096939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/15/2023]
Abstract
Habitable ocean environments on Europa require an influx of reactants to maintain chemical disequilibrium. One possible source of reactants is seafloor volcanism. Modeling has shown that dissipation of tidal energy in Europa's asthenosphere can generate melt, but melt formation cannot be equated with volcanism. Melt must also be transported through Europa's cold lithosphere to erupt at the seafloor. Here, we use two models of dike propagation to show that dikes can only traverse the lithosphere if either the fracture toughness of the lithosphere or the flux into the dike is large (>500 MPa m1/2 or ∼1 m2 s-1, respectively). We conclude that cyclic volcanic episodes might provide reactants to Europa's ocean if magma accumulates at the base of the lithosphere for several thousand years. However, if dikes form too frequently, or are too numerous, the magma flux into each will be insufficient, and volcanism cannot support a habitable ocean environment.
Collapse
Affiliation(s)
- M. T. Bland
- Astrogeology Science CenterU. S. Geological SurveyFlagstaffAZUSA
| | - C. M. Elder
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
2
|
Deutsch AN, Neumann GA, Head JW, Wilson L. GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon. ICARUS 2019; 331:192-208. [PMID: 32550742 PMCID: PMC7302338 DOI: 10.1016/j.icarus.2019.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90-190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6-660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For Northern Flamsteed (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/m3, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/m3. For the Northern and Southern Marius Hills anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~37% of the regionally thin crust. The structure of Southern Aristarchus Plateau (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift, however understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane.
Collapse
Affiliation(s)
- Ariel N. Deutsch
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | | | - James W. Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Lionel Wilson
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
3
|
Keske AL, Hamilton CW, McEwen AS, Daubar IJ. Episodes of fluvial and volcanic activity in Mangala Valles, Mars. ICARUS 2015; 245:333-347. [PMID: 29176911 PMCID: PMC5701667 DOI: 10.1016/j.icarus.2014.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400-500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.
Collapse
Affiliation(s)
- Amber L. Keske
- School of Earth and Space Exploration, Arizona State University, 201 E. Orange Mall, Tempe, AZ 85287, United States
| | | | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, United States
| | - Ingrid J. Daubar
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
4
|
Platz T, Byrne PK, Massironi M, Hiesinger H. Volcanism and tectonism across the inner solar system: an overview. ACTA ACUST UNITED AC 2014. [DOI: 10.1144/sp401.22] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractVolcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book, in general, and this overview, in particular, aim to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system – a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic processes are enormous, and vary across the inventory of inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this review are but a primer to the expansive field of planetary volcanism and tectonism. In addition to this extended introductory contribution, this Special Publication features 21 dedicated research articles about volcanic and tectonic processes manifest across the inner solar system. Those articles are summarized at the end of this review.
Collapse
Affiliation(s)
- T. Platz
- Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719-2395, USA
- Freie Universität Berlin, Institute of Geological Sciences, Planetary Sciences & Remote Sensing, Malteserstrasse 74-100, 12249 Berlin, Germany
| | - P. K. Byrne
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Boulevard, Houston, TX 77058, USA
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305, USA
| | - M. Massironi
- Dipartimento di Geoscienze, Universita' degli Studi di Padova, via G. Gradenigo 6, 35131 Padova, Italy
| | - H. Hiesinger
- Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
5
|
Andrews-Hanna JC, Asmar SW, Head JW, Kiefer WS, Konopliv AS, Lemoine FG, Matsuyama I, Mazarico E, McGovern PJ, Melosh HJ, Neumann GA, Nimmo F, Phillips RJ, Smith DE, Solomon SC, Taylor GJ, Wieczorek MA, Williams JG, Zuber MT. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 2012; 339:675-8. [PMID: 23223393 DOI: 10.1126/science.1231753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.
Collapse
Affiliation(s)
- Jeffrey C Andrews-Hanna
- Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Byrne PK, van Wyk de Vries B, Murray JB, Troll VR. A volcanotectonic survey of Ascraeus Mons, Mars. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Smart KJ, Wyrick DY, Ferrill DA. Discrete element modeling of Martian pit crater formation in response to extensional fracturing and dilational normal faulting. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003742] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Lanz JK, Saric MB. Cone fields in SW Elysium Planitia: Hydrothermal venting on Mars? ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Johnson SS, Mischna MA, Grove TL, Zuber MT. Sulfur-induced greenhouse warming on early Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002962] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
|
11
|
Bleacher JE, Greeley R, Williams DA, Cave SR, Neukum G. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002873] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Leask HJ, Wilson L, Mitchell KL. Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002851] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harald J. Leask
- Planetary Science Research Group, Environmental Science Department; Institute of Environmental and Natural Sciences, Lancaster University; Lancaster UK
| | - Lionel Wilson
- Planetary Science Research Group, Environmental Science Department; Institute of Environmental and Natural Sciences, Lancaster University; Lancaster UK
| | - Karl L. Mitchell
- Planetary Science Research Group, Environmental Science Department; Institute of Environmental and Natural Sciences, Lancaster University; Lancaster UK
- Jet Propulsion Laboratory; Pasadena California USA
| |
Collapse
|
13
|
O'Neill C, Lenardic A, Jellinek AM, Kiefer WS. Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002799] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Shean DE, Head JW, Fastook JL, Marchant DR. Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002761] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Hanna JC, Phillips RJ. Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002546] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Ivanov MA, Head JW. Alba Patera, Mars: Topography, structure, and evolution of a unique late Hesperian–early Amazonian shield volcano. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002469] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Mouginis-Mark PJ, Christensen PR. New observations of volcanic features on Mars from the THEMIS instrument. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002421] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Rodríguez JAP. Control of impact crater fracture systems on subsurface hydrology, ground subsidence, and collapse, Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004je002365] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Leverington DW. An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004je002237] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
|
21
|
Leverington DW. Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004je002311] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Cailleau B, Walter TR, Janle P, Hauber E. Modeling volcanic deformation in a regional stress field: Implications for the formation of graben structures on Alba Patera, Mars. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002135] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas R. Walter
- Marine Geology and Geophysics; Rosenstiel School of Marine and Atmospheric Science; Miami Florida USA
| | - Peter Janle
- Institute of Geosciences, Department of Geophysics; Kiel University; Kiel Germany
| | - Ernst Hauber
- Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR); Berlin Germany
| |
Collapse
|
23
|
Russell PS. Elysium-Utopia flows as mega-lahars: A model of dike intrusion, cryosphere cracking, and water-sediment release. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001995] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
|
25
|
|
26
|
Scott ED. Plinian eruptions and passive collapse events as mechanisms of formation for Martian pit chain craters. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000je001432] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Scott ED. Emplacement of giant radial dikes in the northern Tharsis region of Mars. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000je001431] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|