Wu T, Tivey MA, Tao C, Zhang J, Zhou F, Liu Y. An intermittent detachment faulting system with a large sulfide deposit revealed by multi-scale magnetic surveys.
Nat Commun 2021;
12:5642. [PMID:
34561459 PMCID:
PMC8463574 DOI:
10.1038/s41467-021-25880-1]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Magmatic and tectonic processes can contribute to discontinuous crustal accretion and play an important role in hydrothermal circulation at ultraslow-spreading ridges, however, it is difficult to accurately describe the processes without an age framework to constrain crustal evolution. Here we report on a multi-scale magnetic survey that provides constraints on the fine-scale evolution of a detachment faulting system that hosts hydrothermal activity at 49.7°E on the Southwest Indian Ridge. Reconstruction of the multi-stage detachment faulting history shows a previous episode of detachment faulting took place 0.76~1.48 My BP, while the present fault has been active for the past ~0.33 My and is just in the prime of life. This fault sustains hydrothermal circulation that has the potential for developing a large sulfide deposit. High resolution multiscale magnetics allows us to constrain the relative balance between periods of detachment faulting and magmatism to better describe accretionary processes on an ultraslow spreading ridge.
In ultraslow-spreading ridges intermittent detachment faulting could contribute to discontinuous magmatic accretion supporting the development of massive sulfide deposits. Here the authors using a multi-scale magnetic survey of the Southwest Indian Ridge constrain that an episode of detachment faulting took place 0.7-1.48 Ma, with the present fault active since 0.33 Ma.
Collapse