1
|
Chen Z, Schofield R, Rayner P, Zhang T, Liu C, Vincent C, Fiddes S, Ryan RG, Alroe J, Ristovski ZD, Humphries RS, Keywood MD, Ward J, Paton-Walsh C, Naylor T, Shu X. Characterization of aerosols over the Great Barrier Reef: The influence of transported continental sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:426-437. [PMID: 31299575 DOI: 10.1016/j.scitotenv.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The rapid environmental changes in Australia prompt a more thorough investigation of the influence of transportation, local emissions, and optical-chemical properties on aerosol production across the region. A month-long intensive measurement campaign was conducted during spring 2016 at Mission Beach, a remote coastal site west of the Great Barrier Reef (GBR) on the north-east coast of Australia. One aerosol pollution episode was investigated in early October. This event was governed by meteorological conditions and characterized by the increase in black carbon (BC) mass concentration (averaged value of 0.35 ± 0.20 μg m-3). Under the influence of the continental transportation, a new layer of nucleation-mode aerosols with an initial size diameter of 20 nm was observed and aerosol number concentrations reached the peak of 6733 cm-3 at a diameter of 29 nm. The averaged aerosol extinction coefficient at the height of 2 km was 150 Mm-1, with a small depolarized ratio (3.5-5%). Simultaneously, the boundary layer height presented a fall-rise trend in the presence of these enhanced aerosol concentrations and became stable in a later stage of the episode. We did not observe clear boundary layer height diurnal variations from the LiDAR observations or from the Weather Research and Forecasting (WRF) model outputs, except in an earlier stage of the aerosol episode for the former. Although the sea breeze may have been responsible for these particles, on the balance of available data, we suggest that the aerosol properties at the GBR surface during this period are more likely influenced by regional transportation of continental sources, including biomass-burning aerosols.
Collapse
Affiliation(s)
- Zhenyi Chen
- Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 230031 Hefei, China
| | - Robyn Schofield
- School of Earth Sciences, University of Melbourne, 3010 Melbourne, VIC, Australia
| | - Peter Rayner
- School of Earth Sciences, University of Melbourne, 3010 Melbourne, VIC, Australia
| | - Tianshu Zhang
- Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 230031 Hefei, China
| | - Cheng Liu
- Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 230031 Hefei, China; School of Earth and Space Sciences, University of Science and Technology of China, 230026 Hefei, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Claire Vincent
- School of Earth Sciences, University of Melbourne, 3010 Melbourne, VIC, Australia
| | - Sonya Fiddes
- School of Earth Sciences, University of Melbourne, 3010 Melbourne, VIC, Australia
| | - Robert George Ryan
- School of Earth Sciences, University of Melbourne, 3010 Melbourne, VIC, Australia
| | - Joel Alroe
- International Laboratory for Air Quality and Health, Queensland University of Technology, QLD 4000, Australia
| | - Zoran D Ristovski
- International Laboratory for Air Quality and Health, Queensland University of Technology, QLD 4000, Australia
| | - Ruhi S Humphries
- Climate Science Centre, Oceans and Atmosphere, CSIRO, 3195 Aspendale, VIC, Australia
| | - Melita D Keywood
- Climate Science Centre, Oceans and Atmosphere, CSIRO, 3195 Aspendale, VIC, Australia
| | - Jason Ward
- Climate Science Centre, Oceans and Atmosphere, CSIRO, 3195 Aspendale, VIC, Australia
| | | | - Travis Naylor
- School of Chemistry, University of Wollongong, 2522, NSW, Australia
| | - Xiaowen Shu
- Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 230031 Hefei, China
| |
Collapse
|
2
|
Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol. Proc Natl Acad Sci U S A 2013; 110:17662-7. [PMID: 23447567 DOI: 10.1073/pnas.1213149110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.
Collapse
|
3
|
Kondo Y, Matsui H, Moteki N, Sahu L, Takegawa N, Kajino M, Zhao Y, Cubison MJ, Jimenez JL, Vay S, Diskin GS, Anderson B, Wisthaler A, Mikoviny T, Fuelberg HE, Blake DR, Huey G, Weinheimer AJ, Knapp DJ, Brune WH. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015152] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Han S, Kondo Y, Oshima N, Takegawa N, Miyazaki Y, Hu M, Lin P, Deng Z, Zhao Y, Sugimoto N, Wu Y. Temporal variations of elemental carbon in Beijing. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012027] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Wespes C, Hurtmans D, Herbin H, Barret B, Turquety S, Hadji‐Lazaro J, Clerbaux C, Coheur P. First global distributions of nitric acid in the troposphere and the stratosphere derived from infrared satellite measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Catherine Wespes
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
| | - Daniel Hurtmans
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
| | - Hervé Herbin
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
| | - Brice Barret
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
- Now at Laboratoire d’Aérologie, UMR 5560 CNRS/Université Paul Sabatier, Observatoire de Midi‐Pyrénées, Toulouse, France
| | - Solène Turquety
- Service d’Aéronomie, Institut Pierre‐Simon Laplace Université Pierre et Marie Curie Paris France
| | - Juliette Hadji‐Lazaro
- Service d’Aéronomie, Institut Pierre‐Simon Laplace Université Pierre et Marie Curie Paris France
| | - Cathy Clerbaux
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
- Service d’Aéronomie, Institut Pierre‐Simon Laplace Université Pierre et Marie Curie Paris France
| | - Pierre‐François Coheur
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique Université Libre de Bruxelles Brussels Belgium
- Research Associate with the F.N.R.S. Belgium
| |
Collapse
|
6
|
Orlando JJ, Piety CA, Nicovich JM, McKee ML, Wine PH. Rates and Mechanisms for the Reactions of Chlorine Atoms with Iodoethane and 2-Iodopropane. J Phys Chem A 2005; 109:6659-75. [PMID: 16834018 DOI: 10.1021/jp051715x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reaction of Cl atoms with iodoethane has been studied via a combination of laser flash photolysis/resonance fluorescence (LFP-RF), environmental chamber/Fourier transform (FT)IR, and quantum chemical techniques. Above 330 K, the flash photolysis data indicate that the reaction proceeds predominantly via hydrogen abstraction. The following Arrhenius expressions (in units of cm3 molecule(-1) s(-1)) apply over the temperature range 334-434 K for reaction of Cl with CH3CH2I (k4(H)) and CD3CD2I (k4(D)): k4(H) = (6.53 +/- 3.40) x 10(-11) exp[-(428 +/- 206)/T] and k4(D) = (2.21 +/- 0.44) x 10(-11) exp[-(317 +/- 76)/T]. At room temperature and below, the reaction proceeds both via hydrogen abstraction and via reversible formation of an iodoethane/Cl adduct. Analysis of the LFP-RF data yields a binding enthalpy (0 K) for CD3CD2I x Cl of 57 +/- 10 kJ mol(-1). Calculations using density functional theory show that the adduct is characterized by a C-I-Cl bond angle of 84.5 degrees; theoretical binding enthalpies of 38.2 kJ/mol, G2'[ECP(S)], and 59.0 kJ mol(-1), B3LYP/ECP, are reasonably consistent with the experimentally derived result. Product studies conducted in the environmental chamber show that hydrogen abstraction from both the -CH2I and -CH3 groups occur to a significant extent and also provide evidence for a reaction of the CH3CH2I x Cl adduct with CH3CH2I, leading to CH3CH2Cl formation. Complementary environmental chamber studies of the reaction of Cl atoms with 2-iodopropane, CH3CHICH3, are also presented. As determined by relative rate methods, the reaction proceeds with an effective rate coefficient, k6, of (5.0 +/- 0.6) x 10(-11) cm3 molecule(-1) s(-1) at 298 K. Product studies indicate that this reaction also occurs via two abstraction channels (from the CH3 groups and from the -CHI- group) and via reversible adduct formation.
Collapse
Affiliation(s)
- John J Orlando
- Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | | | | | | | | |
Collapse
|
7
|
Neuman JA, Parrish DD, Ryerson TB, Brock CA, Wiedinmyer C, Frost GJ, Holloway JS, Fehsenfeld FC. Nitric acid loss rates measured in power plant plumes. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd005092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. A. Neuman
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Aeronomy Laboratory; NOAA; Boulder Colorado USA
| | | | | | - C. A. Brock
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Aeronomy Laboratory; NOAA; Boulder Colorado USA
| | - C. Wiedinmyer
- National Center for Atmospheric Research; Boulder Colorado USA
| | - G. J. Frost
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Aeronomy Laboratory; NOAA; Boulder Colorado USA
| | - J. S. Holloway
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Aeronomy Laboratory; NOAA; Boulder Colorado USA
| | - F. C. Fehsenfeld
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Aeronomy Laboratory; NOAA; Boulder Colorado USA
| |
Collapse
|
8
|
Takegawa N, Kondo Y, Koike M, Chen G, Machida T, Watai T, Blake DR, Streets DG, Woo JH, Carmichael GR, Kita K, Miyazaki Y, Shirai T, Liley JB, Ogawa T. Removal of NOxand NOyin Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004866] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N. Takegawa
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - Y. Kondo
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - M. Koike
- Department of Earth and Planetary Science; University of Tokyo; Tokyo Japan
| | - G. Chen
- NASA Langley Research Center; Hampton Virginia USA
| | - T. Machida
- National Institute for Environmental Studies; Ibaraki Japan
| | - T. Watai
- Global Environmental Forum; Ibaraki Japan
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - D. G. Streets
- Decision and Information Sciences Division; Argonne National Laboratory; Argonne Illinois USA
| | - J.-H. Woo
- Center for Global and Regional Environmental Research; University of Iowa; Iowa City Iowa USA
| | - G. R. Carmichael
- Center for Global and Regional Environmental Research; University of Iowa; Iowa City Iowa USA
| | - K. Kita
- Department of Environmental Science; Ibaraki University; Ibaraki Japan
| | - Y. Miyazaki
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - T. Shirai
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| | - J. B. Liley
- National Institute of Water and Atmospheric Research; Lauder New Zealand
| | - T. Ogawa
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| |
Collapse
|
9
|
Oppenheimer C, Tsanev VI, Allen AG, McGonigle AJS, Cardoso AA, Wiatr A, Paterlini W, Dias CDM. NO2 emissions from agricultural burning in São Paulo, Brazil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:4557-4561. [PMID: 15461163 DOI: 10.1021/es0496219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report here on the application of a compact ultraviolet spectrometer to measurement of NO2 emissions from sugar cane field burns in São Paulo, Brazil. The time-resolved NO2 emission from a 10 ha plot peaked at about 240 g (NO2) s(-1), and amounted to a total yield of approximately 50 kg of N, or about 0.5 g (N) m(-2). Emission of N as NOx (i.e., NO + NO2) was estimated at 2.5 g (N) m(-2), equivalent to 30% of applied fertilizer nitrogen. The corresponding annual emission of NOx nitrogen from São Paulo State sugar cane burning was >45 Gg N. In contrast to mechanized harvesting, which does not require prior burning of the crop, manual harvesting with burning acts to recycle nitrogen into surface soils and ecosystems.
Collapse
Affiliation(s)
- Clive Oppenheimer
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nowak JB, Parrish DD, Neuman JA, Holloway JS, Cooper OR, Ryerson TB, Nicks DK, Flocke F, Roberts JM, Atlas E, de Gouw JA, Donnelly S, Dunlea E, Hübler G, Huey LG, Schauffler S, Tanner DJ, Warneke C, Fehsenfeld FC. Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004488] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. B. Nowak
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - D. D. Parrish
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - J. A. Neuman
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - J. S. Holloway
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - O. R. Cooper
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - T. B. Ryerson
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - D. K. Nicks
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - F. Flocke
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - J. M. Roberts
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - E. Atlas
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - J. A. de Gouw
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - S. Donnelly
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - E. Dunlea
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - G. Hübler
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - L. G. Huey
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - S. Schauffler
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - D. J. Tanner
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - C. Warneke
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - F. C. Fehsenfeld
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| |
Collapse
|
11
|
Kondo Y. Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004203] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Shirai T, Blake DR, Meinardi S, Rowland FS, Russell-Smith J, Edwards A, Kondo Y, Koike M, Kita K, Machida T, Takegawa N, Nishi N, Kawakami S, Ogawa T. Emission estimates of selected volatile organic compounds from tropical savanna burning in northern Australia. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jd000841] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- T. Shirai
- National Space Development Agency of Japan; Earth Observation Research Center; Tokyo Japan
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - S. Meinardi
- Department of Chemistry; University of California; Irvine California USA
| | - F. S. Rowland
- Department of Chemistry; University of California; Irvine California USA
| | - J. Russell-Smith
- Tropical Savannas Cooperative Research Centre; Bushfires Council of the Northern Territory; Northern Territory Australia
| | - A. Edwards
- Tropical Savannas Cooperative Research Centre; Bushfires Council of the Northern Territory; Northern Territory Australia
| | - Y. Kondo
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - M. Koike
- Department of Earth and Planetary Sciences; University of Tokyo; Tokyo Japan
| | - K. Kita
- Department of Environmental Sciences Faculty of Science; Ibaraki University; Ibaraki Japan
| | - T. Machida
- National Institute for Environmental Studies; Tsukuba Japan
| | - N. Takegawa
- Solar-Terrestrial Environment Laboratory; Nagoya University; Aichi Japan
| | - N. Nishi
- Department of Earth and Planetary Sciences; Kyoto University; Kyoto Japan
| | - S. Kawakami
- National Space Development Agency of Japan; Earth Observation Research Center; Tokyo Japan
| | - T. Ogawa
- National Space Development Agency of Japan; Earth Observation Research Center; Tokyo Japan
| |
Collapse
|