1
|
Yang X, Li Y, Ma X, Tan Z, Lu K, Zhang Y. Unclassical Radical Generation Mechanisms in the Troposphere: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15888-15909. [PMID: 39206567 DOI: 10.1021/acs.est.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively known as HOx radicals, are crucial in removing primary pollutants, controlling atmospheric oxidation capacity, and regulating global air quality and climate. An imbalance between radical observations and simulations has been identified based on radical closure experiments, a valuable tool for accessing the state-of-the-art chemical mechanisms, demonstrating a deviation between the existing and actual tropospheric mechanisms. In the past decades, researchers have attempted to explain this deviation and proposed numerous radical generation mechanisms. However, these newly proposed unclassical radical generation mechanisms have not been systematically reviewed, and previous radical-related reviews dominantly focus on radical measurement instruments and radical observations in extensive field campaigns. Herein, we overview the unclassical generation mechanisms of radicals, mainly focusing on outlining the methodology and results of radical closure experiments worldwide and systematically introducing the mainstream mechanisms of unclassical radical generation, involving the bimolecular reaction of HO2 and organic peroxy radicals (RO2), RO2 isomerization, halogen chemistry, the reaction of H2O with O2 over soot, epoxide formation mechanism, mechanism of electronically excited NO2 and water, and prompt HO2 formation in aromatic oxidation. Finally, we highlight the existing gaps in the current studies and suggest possible directions for future research. This review of unclassical radical generation mechanisms will help promote a comprehensive understanding of the latest radical mechanisms and the development of additional new mechanisms to further explain deviations between the existing and actual mechanisms.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| |
Collapse
|
2
|
Chen J, Lane JR, Bates KH, Kjaergaard HG. Atmospheric Gas-Phase Formation of Methanesulfonic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21168-21177. [PMID: 38051922 DOI: 10.1021/acs.est.3c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Despite its impact on the climate, the mechanism of methanesulfonic acid (MSA) formation in the oxidation of dimethyl sulfide (DMS) remains unclear. The DMS + OH reaction is known to form methanesulfinic acid (MSIA), methane sulfenic acid (MSEA), the methylthio radical (CH3S), and hydroperoxymethyl thioformate (HPMTF). Among them, HPMTF reacts further to form SO2 and OCS, while the other three form the CH3SO2 radical. Based on theoretical calculations, we find that the CH3SO2 radical can add O2 to form CH3S(O)2OO, which can react further to form MSA. The branching ratio is highly temperature sensitive, and the MSA yield increases with decreasing temperature. In warmer regions, SO2 is the dominant product of DMS oxidation, while in colder regions, large amounts of MSA can form. Global modeling indicates that the proposed temperature-sensitive MSA formation mechanism leads to a substantial increase in the simulated global atmospheric MSA formation and burden.
Collapse
Affiliation(s)
- Jing Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Joseph R Lane
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Kelvin H Bates
- NOAA Chemical Sciences Laboratory, Earth System Research Laboratories & Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80305, United States
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
3
|
Blackstone CC, Wallace AA, Sanov A. Photoelectron angular distributions in photodetachment from polarised d-like states: the case of HO2−. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1831636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Adam A. Wallace
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Vermeuel MP, Novak GA, Jernigan CM, Bertram TH. Diel Profile of Hydroperoxymethyl Thioformate: Evidence for Surface Deposition and Multiphase Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12521-12529. [PMID: 32866385 DOI: 10.1021/acs.est.0c04323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dimethyl sulfide (DMS; CH3SCH3), a biogenically produced trace gas emitted from the ocean, accounts for a large fraction of natural sulfur released to the marine atmosphere. The oxidation of DMS in the marine boundary layer (MBL), via the hydrogen abstraction pathway, yields the short-lived methylthiomethylperoxy radical (MSP; CH3SCH2OO). In the remote MBL, unimolecular isomerization of MSP outpaces bimolecular chemistry leading to the efficient formation of hydroperoxymethyl thioformate (HPMTF; HOOCH2SCHO). Here, we report the first ground observations and diurnal profiles of HPMTF mixing ratios, vertical fluxes, and deposition velocities to the ocean surface. Average daytime HPMTF mixing ratios, fluxes, and deposition velocities were recorded at 12.1 pptv, -0.11 pptv m s-1, and 0.75 cm s-1, respectively. The deposition velocity of HPMTF is comparable to other soluble gas phase compounds (e.g., HCOOH and HNO3), resulting in a deposition lifetime of 30 h under typical windspeeds (3 m s-1). A box model analysis incorporating the current mechanistic understanding of DMS oxidation chemistry and geostationary satellite cloud imagery data suggests that the lifetime of HPMTF in the MBL at this sampling location is likely controlled by heterogeneous loss to aerosol and uptake to clouds in the morning and evening.
Collapse
Affiliation(s)
- Michael P Vermeuel
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53715, United States
| | - Gordon A Novak
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53715, United States
| | - Christopher M Jernigan
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53715, United States
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53715, United States
| |
Collapse
|
5
|
Yuan Y, Zhao X, Wang S, Wang L. Atmospheric Oxidation of Furan and Methyl-Substituted Furans Initiated by Hydroxyl Radicals. J Phys Chem A 2017; 121:9306-9319. [DOI: 10.1021/acs.jpca.7b09741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Yuan
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaocan Zhao
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Sainan Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Lyu XP, Liu M, Guo H, Ling ZH, Wang Y, Louie PKK, Luk CWY. Spatiotemporal variation of ozone precursors and ozone formation in Hong Kong: Grid field measurement and modelling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1341-1349. [PMID: 27387808 DOI: 10.1016/j.scitotenv.2016.06.214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Grid field measurements of volatile organic compounds (VOCs) covering the entire territory of Hong Kong were simultaneously carried out twice daily on 27 September 2013 and 24 September 2014, respectively, to advance our understanding on the spatiotemporal variations of VOCs and ozone (O3) formation, the factors controlling O3 formation and the efficacy of a control measure in Hong Kong. From before to after the control measure on liquefied petroleum gas (LPG) fueled vehicles, the VOCs originated from LPG vehicle exhaust deceased from 41.3±1.2μg/m(3) (49.7±1.5%) to 32.8±1.4μg/m(3) (38.8±1.7%) (p<0.05). In contrast, the contribution to VOCs made by gasoline and diesel vehicle exhaust and solvent usage increased (p<0.05). VOCs and nitric oxide (NO) in LPG source experienced the highest reductions at the roadside sites, while the variations were not significant at the urban and new town sites (p>0.05). For O3 production, LPG vehicle exhaust generally made a negative contribution (-0.17±0.06 ppbv) at the roadside sites, however it turned to a slightly positive contribution (0.004±0.038 ppbv) after the control measure. At the urban sites, although the reductions of VOCs and NO were minor (p>0.05), O3 produced by LPG vehicle significantly reduced from 4.19±1.92 ppbv to 0.95±0.38 ppbv (p<0.05). Meanwhile, O3 produced by LPG at the new town sites remained stable. The analysis of O3-precursor relationships revealed that alkenes and aromatics were the main species limiting roadside O3 formation, while aromatics were the most predominant controlling factor at urban and new town sites. In contrast, isoprene and sometimes NOx limited the O3 formation in rural environment.
Collapse
Affiliation(s)
- X P Lyu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - M Liu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - H Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - Z H Ling
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Y Wang
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - P K K Louie
- Air Group, Hong Kong Environmental Protection Department, Hong Kong
| | - C W Y Luk
- Air Group, Hong Kong Environmental Protection Department, Hong Kong
| |
Collapse
|
7
|
Wu R, Wang S, Wang L. New Mechanism for the Atmospheric Oxidation of Dimethyl Sulfide. The Importance of Intramolecular Hydrogen Shift in a CH3SCH2OO Radical. J Phys Chem A 2014; 119:112-7. [DOI: 10.1021/jp511616j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Runrun Wu
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Sainan Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial
Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Stone D, Whalley LK, Heard DE. Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem Soc Rev 2012; 41:6348-404. [DOI: 10.1039/c2cs35140d] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Hofzumahaus A, Rohrer F, Lu K, Bohn B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S, Shao M, Zeng L, Wahner A, Zhang Y. Amplified Trace Gas Removal in the Troposphere. Science 2009; 324:1702-4. [DOI: 10.1126/science.1164566] [Citation(s) in RCA: 465] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Development and deployment of an instrument for measurement of atmospheric peroxy radical by chemical amplification. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11430-009-0032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Heard DE. Atmospheric field measurements of the hydroxyl radical using laser-induced fluorescence spectroscopy. Annu Rev Phys Chem 2007; 57:191-216. [PMID: 16599809 DOI: 10.1146/annurev.physchem.57.032905.104516] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hydroxyl radical, OH, is the most important cleansing agent in the Earth's atmosphere, removing the majority of trace gases by oxidation, including greenhouse gases and CFC replacements. It is intimately involved in the chemistry that generates photochemical smog, which includes many substances harmful to health, such as ozone and particulate matter. In this review, the technique of laser-induced fluorescence for the detection of OH in the atmosphere is described, using as an example the fluorescence assay by gas expansion (FAGE) instrument developed at the University of Leeds. The comparison of measured OH concentrations at a given field site with those calculated by an atmospheric model, which is a mathematical representation of the underlying chemistry, provides one of the best methods to test whether the key chemical and physical processes are understood. Examples are given for field measurements made in clean and polluted environments.
Collapse
Affiliation(s)
- Dwayne E Heard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
12
|
Wilson SR, Solomon KR, Tang X. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change. Photochem Photobiol Sci 2007; 6:301-10. [PMID: 17344964 DOI: 10.1039/b700022g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with known usage and atmospheric loss processes, tropospheric concentrations of HFC-134a, the main human-made source of trifluoroacetic acid (TFA), is increasing rapidly. As HFC-134a is a potent greenhouse gas, this increasing concentration has implications for climate change. However, the risks to humans and the environment from substances, such as TFA, produced by atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are considered minimal. Perfluoropolyethers, commonly used as industrial heat transfer fluids and proposed as chlorohydrofluorocarbon (CHFC) substitutes, show great stability to chemical degradation in the atmosphere. These substances have been suggested as substitutes for CHFCs but, as they are very persistent in the atmosphere, they may be important contributors to global warming. It is not known whether these substances will contribute significantly to global warming and its interaction with ozone depletion but they should be considered for further evaluation.
Collapse
Affiliation(s)
- S R Wilson
- Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
13
|
Harrison RM, Yin J, Tilling RM, Cai X, Seakins PW, Hopkins JR, Lansley DL, Lewis AC, Hunter MC, Heard DE, Carpenter LJ, Creasey DJ, Lee JD, Pilling MJ, Carslaw N, Emmerson KM, Redington A, Derwent RG, Ryall D, Mills G, Penkett SA. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: overview of the PUMA Consortium project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 360:5-25. [PMID: 16289266 DOI: 10.1016/j.scitotenv.2005.08.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The PUMA (Pollution of the Urban Midlands Atmosphere) Consortium project involved intensive measurement campaigns in the Summer of 1999 and Winter of 1999/2000, respectively, in which a wide variety of air pollutants were measured in the UK West Midlands conurbation including detailed speciation of VOCs and major component analysis of aerosol. Measurements of the OH and HO2 free radicals by the FAGE technique demonstrated that winter concentrations of OH were approximately half of those measured during the summer despite a factor of 15 reduction in production through the photolysis of ozone. Detailed box modelling of the fast reaction chemistry revealed the decomposition of Criegee intermediates formed from ozone-alkene reactions to be responsible for the majority of the formation of hydroxyl in both the summer and winter campaigns, in contrast to earlier rural measurements in which ozone photolysis was predominant. The main sinks for hydroxyl are reactions with NO2, alkenes and oxygenates. Concentrations of the more stable hydrocarbons were found to be relatively invariant across the conurbation, but the impacts of photochemistry were evident through analyses of formaldehyde which showed the majority to be photochemical in origin as opposed to emitted from road traffic. Measurements on the upwind and downwind boundaries of the conurbation revealed substantial enhancements in NOx as a result of emissions within the conurbation, especially during westerly winds which carried relatively clean air. Using calcium as a tracer for crustal particles, it proved possible to reconstruct aerosol mass from the major chemical components with a fairly high degree of success. The organic to elemental carbon ratios showed a far greater influence of photochemistry in summer than winter, presumably resulting mainly from the greater availability of biogenic precursors during the summer campaign. Two urban airshed models were developed and applied to the conurbation, one Eulerian, the other Lagrangian. Both were able to give a good simulation of concentrations of both primary and secondary pollutants at urban background locations.
Collapse
Affiliation(s)
- R M Harrison
- School of Geography, Earth & Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Andrady A, Aucamp PJ, Bais AF, Ballaré CL, Björn LO, Bornman JF, Caldwell M, Callaghan T, Cullen AP, Erickson DJ, de Gruijl FR, Häder DP, Ilyas M, Kulandaivelu G, Kumar HD, Longstreth J, McKenzie RL, Norval M, Redhwi HH, Smith RC, Solomon KR, Sulzberger B, Takizawa Y, Tang X, Teramura AH, Torikai A, van der Leun JC, Wilson SR, Worrest RC, Zepp RG. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2004. Photochem Photobiol Sci 2005; 4:177-84. [PMID: 15779130 DOI: 10.1039/b418650h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexity of the linkages between ozone depletion, UV-B radiation and climate change has become more apparent.
Collapse
|
15
|
Abstract
Atmospheric free radicals are low concentration, relatively fast reacting species whose influence is felt throughout the atmosphere. Reactive radicals have a key role in maintaining a balanced atmospheric composition through their central function in controlling the oxidative capacity of the atmosphere. In this tutorial review, the chemistry of three main groups of atmospheric radicals HO(x), NO(x) and XO(x)(X = Cl, Br, I) are examined in terms of their sources, interconversions and sinks. Key examples of the chemistry are given for each group of radicals in their atmospheric context.
Collapse
Affiliation(s)
- Paul S Monks
- Department of Chemistry, University of Leicester, UK.
| |
Collapse
|
16
|
Bloss WJ, Evans MJ, Lee JD, Sommariva R, Heard DE, Pilling MJ. The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model. Faraday Discuss 2005; 130:425-36; discussion 491-517, 519-24. [PMID: 16161796 DOI: 10.1039/b419090d] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of in situ, ground-based observations of marine boundary layer OH concentrations performed by laser-induced fluorescence at Mace Head, Ireland and Cape Grim, Tasmania, and a global chemistry-transport model (GEOS-CHEM) are used to obtain an estimate of the mean concentration of OH in the global troposphere. The model OH field is constrained to the geographically sparse, observed OH concentration averaged over the duration of the measurement campaigns to remove diurnal and synoptic variability. The mean northern and southern hemispheric OH concentrations obtained are 0.91 x 10(6) cm(-3) and 1.03 x 10(6) cm(-3) respectively, consistent with values determined from methyl chloroform observations. The observational OH dataset is heavily biased towards mid-latitude summer and autumn observations in the northern hemisphere, while the global oxidising capacity is dominated by the tropics which is observed extremely sparsely; the implications of these geographical distributions are discussed.
Collapse
Affiliation(s)
- William J Bloss
- School of Chemistry, University of Leeds, Leeds, UK, LS2 9JT.
| | | | | | | | | | | |
Collapse
|
17
|
Haggerstone AL. Improved model predictions of HO2with gas to particle mass transfer rates calculated using aerosol number size distributions. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Affiliation(s)
- Dwayne E Heard
- Department of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|