1
|
Zhu H, Stern RJ, Yang J. Seismic evidence for subduction-induced mantle flows underneath Middle America. Nat Commun 2020; 11:2075. [PMID: 32350254 PMCID: PMC7190827 DOI: 10.1038/s41467-020-15492-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Laboratory experiments and geodynamic simulations demonstrate that poloidal- and toroidal-mode mantle flows develop around subduction zones. Here, we use a new 3-D azimuthal anisotropy model constructed by full waveform inversion, to infer deep subduction-induced mantle flows underneath Middle America. At depths shallower than 150 km, poloidal-mode flow is perpendicular to the trajectory of the Middle American Trench. From 300 to 450 km depth, return flows surround the edges of the Rivera and Atlantic slabs, while escape flows are inferred through slab windows beneath Panama and central Mexico. Furthermore, at 700 km depth, the study region is dominated by the Farallon anomaly, with fast axes perpendicular to its strike, suggesting the development of lattice-preferred orientations by substantial stress. These observations provide depth-dependent seismic anisotropy for future mantle flow simulations, and call for further investigations about the deformation mechanisms and elasticity of minerals in the transition zone and uppermost lower mantle. The motions of subducted slabs are expected to drive mantle flow around slab edges, however, evidence of deep mantle flow has so far remained elusive. Here, the authors present a Full Waveform Inversion 3-D anisotropy model which allows them to infer deep subduction-induced mantle flows underneath the Mid-Americas and the Caribbean.
Collapse
Affiliation(s)
- Hejun Zhu
- Department of Geosciences, The University of Texas at Dallas, Dallas, TX, USA.
| | - Robert J Stern
- Department of Geosciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Jidong Yang
- Department of Geosciences, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
2
|
Strak V, Schellart WP. A subduction and mantle plume origin for Samoan volcanism. Sci Rep 2018; 8:10424. [PMID: 29992964 PMCID: PMC6041271 DOI: 10.1038/s41598-018-28267-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
The origin of Samoan volcanism in the southwest Pacific remains enigmatic. Whether mantle melting is solely caused by a mantle plume is questionable because some volcanism, here referred to as non-hotspot volcanism, defies the plume model and its linear age-progression trend. Indeed, non-hotspot volcanism occurred as far as 740 km west of the predicted Samoan hotspot after 5 Ma. Here we use fully-dynamic laboratory subduction models and a tectonic reconstruction to show that the nearby Tonga-Kermadec-Hikurangi (TKH) subduction zone induces a broad mantle upwelling around the northern slab edge that coincides with the non-hotspot volcanic activity after 5 Ma. Using published potential mantle temperatures for the ambient mantle and Samoan mantle plume, we find that two geodynamic processes can explain mantle melting responsible for intraplate volcanism in the Samoan region. We propose that before 5 Ma, the volcanism is consistent with the plume model, whereas afterwards non-hotspot volcanism resulted from interaction between the Subduction-Induced Mantle Upwelling (SIMU) and Samoan mantle plume material that propagated west from the hotspot due to the toroidal component of slab rollback-induced mantle flow. In this geodynamic scenario, the SIMU drives decompression melting in the westward-swept plume material, thus producing the non-hotpot volcanism.
Collapse
Affiliation(s)
- Vincent Strak
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands. .,Instituto Dom Luiz, Lisbon University, Lisbon, Portugal.
| | - Wouter P Schellart
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, 3800, Australia.,Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Scarfì L, Barberi G, Barreca G, Cannavò F, Koulakov I, Patanè D. Slab narrowing in the Central Mediterranean: the Calabro-Ionian subduction zone as imaged by high resolution seismic tomography. Sci Rep 2018; 8:5178. [PMID: 29581539 PMCID: PMC5980090 DOI: 10.1038/s41598-018-23543-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 12/01/2022] Open
Abstract
A detailed 3D image of the Calabro-Ionian subduction system in the central Mediterranean was obtained by means of a seismic tomography, exploiting a large dataset of local earthquakes and computing algorithms able to build a dense grid of measure nodes. Results show that the slab is continuous below the southern sector of the Calabro-Peloritan Arc, but the deformation processes developing at its edges are leading to its progressive narrowing, influencing tectonics and magmatism at the surface, and with possible stress concentration in the tip zones. In the southwest, the deformation occurring at a free slab edge lead to propagation of a vertical lithospheric tear in the overriding plate, which extends along a NW-SE fault system (Aeolian-Tindari-Letojanni) up to about 30 km into the Ionian Sea; further southeast, the lithosphere appears only flexed and not broken yet. In the northeast, the slab seems to break progressively, parallel to the trench. Finally, northwest of Mt. Etna, the tomography highlights low VP that can be related to an upwelling of deep mantle material likely flowing laterally through a window opened by the complete slab detachment.
Collapse
Affiliation(s)
- L Scarfì
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Catania, Italy.
| | - G Barberi
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Catania, Italy
| | - G Barreca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Sezione di Scienze della Terra, Catania, Italy
| | - F Cannavò
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Catania, Italy
| | - I Koulakov
- Trofimuk Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - D Patanè
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Catania, Italy
| |
Collapse
|
4
|
South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nat Commun 2017; 8:15249. [PMID: 28508893 PMCID: PMC5440808 DOI: 10.1038/ncomms15249] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/13/2017] [Indexed: 11/26/2022] Open
Abstract
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200–300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating ‘horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs. How flat slabs at subduction zones are created remains unclear. Here, the authors show that the Nazca slab has retreated at ∼2 cm per year since 50 Ma but no rollback has occurred in the last ∼12 Myr in the flat slab, implying that an overpressured sub-slab mantle can impede rollback and maintain a flat slab.
Collapse
|
5
|
Ballmer MD, Schmerr NC, Nakagawa T, Ritsema J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. SCIENCE ADVANCES 2015; 1:e1500815. [PMID: 26824060 PMCID: PMC4730845 DOI: 10.1126/sciadv.1500815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 06/02/2023]
Abstract
Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection.
Collapse
Affiliation(s)
- Maxim D. Ballmer
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | - Takashi Nakagawa
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | - Jeroen Ritsema
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Jadamec MA, Billen MI. The role of rheology and slab shape on rapid mantle flow: Three-dimensional numerical models of the Alaska slab edge. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jb008563] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Stadler G, Gurnis M, Burstedde C, Wilcox LC, Alisic L, Ghattas O. The dynamics of plate tectonics and mantle flow: from local to global scales. Science 2010; 329:1033-8. [PMID: 20798311 DOI: 10.1126/science.1191223] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.
Collapse
Affiliation(s)
- Georg Stadler
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
8
|
Schellart WP, Stegman DR, Farrington RJ, Freeman J, Moresi L. Cenozoic Tectonics of Western North America Controlled by Evolving Width of Farallon Slab. Science 2010; 329:316-9. [DOI: 10.1126/science.1190366] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- W. P. Schellart
- School of Geosciences, Monash University, Melbourne, Victoria 3800, Australia
| | - D. R. Stegman
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - R. J. Farrington
- School of Mathematical Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - J. Freeman
- School of Mathematical Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Bureau of Meteorology, Melbourne, Victoria 3001, Australia
| | - L. Moresi
- School of Geosciences, Monash University, Melbourne, Victoria 3800, Australia
- School of Mathematical Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
9
|
Jadamec MA, Billen MI. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature 2010; 465:338-41. [PMID: 20485433 DOI: 10.1038/nature09053] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/26/2010] [Indexed: 11/09/2022]
Abstract
The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.
Collapse
Affiliation(s)
- Margarete A Jadamec
- Department of Geology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
10
|
Yang T, Grand SP, Wilson D, Guzman-Speziale M, Gomez-Gonzalez JM, Dominguez-Reyes T, Ni J. Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jb005830] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ting Yang
- School of Ocean and Earth Sciences; Tongji University; Shanghai China
| | - Stephen P. Grand
- Department of Geological Sciences; University of Texas; Austin Texas USA
| | - David Wilson
- Department of Geological Sciences; University of Texas; Austin Texas USA
| | | | | | | | - James Ni
- Physics Department; New Mexico State University; Las Cruces New Mexico USA
| |
Collapse
|
11
|
Schellart WP, Freeman J, Stegman DR, Moresi L, May D. Evolution and diversity of subduction zones controlled by slab width. Nature 2007; 446:308-11. [PMID: 17361181 DOI: 10.1038/nature05615] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 01/18/2007] [Indexed: 11/09/2022]
Abstract
Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel extent (that is, two-dimensional) or finite in width but fixed in space. Subduction zones and their associated slabs are, however, limited in lateral extent (250-7,400 km) and their three-dimensional geometry evolves over time. Here we show that slab width controls two first-order features of plate tectonics-the curvature of subduction zones and their tendency to retreat backwards with time. Using three-dimensional numerical simulations of free subduction, we show that trench migration rate is inversely related to slab width and depends on proximity to a lateral slab edge. These results are consistent with retreat velocities observed globally, with maximum velocities (6-16 cm yr(-1)) only observed close to slab edges (<1,200 km), whereas far from edges (>2,000 km) retreat velocities are always slow (<2.0 cm yr(-1)). Models with narrow slabs (< or =1,500 km) retreat fast and develop a curved geometry, concave towards the mantle wedge side. Models with slabs intermediate in width ( approximately 2,000-3,000 km) are sublinear and retreat more slowly. Models with wide slabs (> or =4,000 km) are nearly stationary in the centre and develop a convex geometry, whereas trench retreat increases towards concave-shaped edges. Additionally, we identify periods (5-10 Myr) of slow trench advance at the centre of wide slabs. Such wide-slab behaviour may explain mountain building in the central Andes, as being a consequence of its tectonic setting, far from slab edges.
Collapse
Affiliation(s)
- W P Schellart
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | | | |
Collapse
|
12
|
Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A, Bui HA. Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jb003792] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Funiciello
- Dipartimento di Scienze Geologiche; Università degli Studi “Roma TRE”; Rome Italy
| | - M. Moroni
- Dipartimento di Idraulica, Trasporti e Strade; Università degli Studi di Roma “La Sapienza”; Rome Italy
| | - C. Piromallo
- Istituto Nazionale di Geofisica e Vulcanologia; Rome Italy
| | - C. Faccenna
- Dipartimento di Scienze Geologiche; Università degli Studi “Roma TRE”; Rome Italy
| | - A. Cenedese
- Dipartimento di Idraulica, Trasporti e Strade; Università degli Studi di Roma “La Sapienza”; Rome Italy
| | - H. A. Bui
- Dipartimento di Scienze Geologiche; Università degli Studi “Roma TRE”; Rome Italy
| |
Collapse
|
13
|
Conrad CP, Lithgow-Bertelloni C. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jb002991] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Clinton P. Conrad
- Department of Geological Sciences; University of Michigan; Ann Arbor Michigan USA
| | | |
Collapse
|