1
|
Colón-Santos S, Vázquez-Salazar A, Adams A, Campillo-Balderas JA, Hernández-Morales R, Jácome R, Muñoz-Velasco I, Rodriguez LE, Schaible MJ, Schaible GA, Szeinbaum N, Thweatt JL, Trubl G. Chapter 2: What Is Life? ASTROBIOLOGY 2024; 24:S40-S56. [PMID: 38498820 DOI: 10.1089/ast.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The question "What is life?" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question "What is life?" is central to formulating other questions such as "Where else could life be?" and "How do we search for life elsewhere?" While many of these questions are addressed throughout the Astrobiology Primer 3.0, this chapter gives historical context for defining life, highlights conceptual characteristics shared by all life on Earth as well as key features used to describe it, discusses why it matters for astrobiology, and explores both challenges and opportunities for finding an informative operational definition.
Collapse
Affiliation(s)
- Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | | | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - George A Schaible
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Luo Y, Hu Y, Yang J, Zhang M, Yung YL. Coupled atmospheric chemistry, radiation, and dynamics of an exoplanet generate self-sustained oscillations. Proc Natl Acad Sci U S A 2023; 120:e2309312120. [PMID: 38091286 PMCID: PMC10743409 DOI: 10.1073/pnas.2309312120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/13/2023] [Indexed: 12/24/2023] Open
Abstract
Nonlinearity in photochemical systems is known to allow self-sustained oscillations, but they have received little attention in studies of planetary atmospheres. Here, we present a unique, self-oscillatory solution for ozone chemistry of an exoplanet from a numerical simulation using a fully coupled, three-dimensional (3D) atmospheric chemistry-radiation-dynamics model. Forced with nonvarying stellar insolation and emission flux of nitric oxide (NO), atmospheric ozone abundance oscillates by a factor of thirty over a multidecadal timescale. As such self-oscillations can only occur with biological nitrogen fixation contributing to NO emission, we propose that they are a unique class of biosignature. The resulting temporal variability in the atmospheric spectrum is potentially observable. Our results underscore the importance of revisiting the spectra of exoplanets over multidecadal timescales to characterizing the atmospheric chemistry of exoplanets and searching for exoplanet biosignatures. There are also profound implications for comparative planetology and the evolution of the atmospheres of terrestrial planets in the solar system and beyond. Fully coupled, 3D atmospheric chemistry-radiation-dynamics models can reveal new phenomena that may not exist in one-dimensional models, and hence, they are powerful tools for future planetary atmospheric research.
Collapse
Affiliation(s)
- Yangcheng Luo
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing100871, China
- Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace, Sorbonne Université, École Normale Supérieure, Université Paris Sciences et Lettres, Ecole Polytechnique, Institut Polytechnique de Paris, Centre National de la Recherche Scientifique, Paris75005, France
| | - Yongyun Hu
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing100871, China
| | - Jun Yang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing100871, China
| | - Michael Zhang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Yuk L. Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Liquid water on cold exo-Earths via basal melting of ice sheets. Nat Commun 2022; 13:7521. [PMID: 36473880 PMCID: PMC9726705 DOI: 10.1038/s41467-022-35187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid water is a critical component of habitability. However, the production and stability of surficial liquid water can be challenging on planets outside the Habitable Zone and devoid of adequate greenhouse warming. On such cold, icy exo-Earths, basal melting of regional/global ice sheets by geothermal heat provides an alternative means of forming liquid water. Here, we model the thermophysical evolution of ice sheets to ascertain the geophysical conditions that allow liquid water to be produced and maintained at temperatures above the pressure-controlled freezing point of water ice on exo-Earths. We show that even with a modest, Moon-like geothermal heat flow, subglacial oceans of liquid water can form at the base of and within the ice sheets on exo-Earths. Furthermore, subglacial oceans may persist on exo-Earths for a prolonged period due to the billion-year half-lives of heat-producing elements responsible for geothermal heat. These subglacial oceans, often in contact with the planet's crust and shielded from the high energy radiation of their parent star by thick ice layers, may provide habitable conditions for an extended period.
Collapse
|
4
|
Abstract
The severe “Snowball Earth” glaciations proposed to have existed during the Cryogenian period (720 to 635 million years ago) coincided with the breakup of one supercontinent and assembly of another. Whereas the presence of extensive continental ice sheets predicts a tidally energetic Snowball ocean due to the reduced ocean depth, the supercontinent palaeogeography predicts weak tides because the surrounding ocean is too large to host tidal resonances. Here we show, using an established numerical global tidal model and paleogeographic reconstructions, that the Cryogenian ocean hosted diminished tidal amplitudes and associated energy dissipation rates, reaching 10–50% of today’s rates, during the Snowball glaciations. We argue that the near-absence of Cryogenian tidal processes may have been one contributor to the prolonged glaciations if these were near-global. These results also constrain lunar distance and orbital evolution throughout the Cryogenian, and highlight that simulations of past oceans should include explicit tidally driven mixing processes. How and why the ‘Snowball Earth’ occurred during the Cryogenian period is debated. Here, the authors show that the cryogenian ocean hosted diminished tidal amplitudes and associated energy dissipation rates, reaching 10-50% of today’s rates thus perhaps contributing to prolonged glaciations.
Collapse
|
5
|
Liu Y, Yang J, Bao H, Shen B, Hu Y. Large equatorial seasonal cycle during Marinoan snowball Earth. SCIENCE ADVANCES 2020; 6:eaay2471. [PMID: 32537489 PMCID: PMC7269644 DOI: 10.1126/sciadv.aay2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
In the equatorial regions on Earth today, the seasonal cycle of the monthly mean surface air temperature is <10°C. However, deep (>1 m) sand wedges were found near the paleoequator in the Marinoan glaciogenic deposits at ~635 million years ago, indicating a large seasonal cycle (probably >30°C). Through numerical simulations, we show that the equatorial seasonal cycle could reach >30°C at various continental locations if the oceans are completely frozen over, as would have been the case for a snowball Earth, or could reach ~20°C if the oceans are not completely frozen over, as would have been the case for a waterbelt Earth. These values are obtained at the maximum eccentricity of the Earth orbit, i.e., 0.0679, and will be approximately 10°C smaller if the present-day eccentricity is used. For these seasonal cycles, theoretical calculations show that the deep sand wedges form readily in a snowball Earth while hardly form in a waterbelt Earth.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Jun Yang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Huiming Bao
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Bing Shen
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Science, Peking University, Beijing 100871, China
| | - Yongyun Hu
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Outer Limits of the Habitable Zones in Terms of Climate Mode and Climate Evolution of Earth-like Planets. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/ab0aef] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Haqq-Misra J, Kopparapu RK, Batalha NE, Harman CE, Kasting JF. LIMIT CYCLES CAN REDUCE THE WIDTH OF THE HABITABLE ZONE. THE ASTROPHYSICAL JOURNAL 2016; 827:120. [PMID: 30116072 PMCID: PMC6090540 DOI: 10.3847/0004-637x/827/2/120] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The liquid water habitable zone (HZ) describes the orbital distance at which a terrestrial planet can maintain above-freezing conditions through regulation by the carbonate-silicate cycle. Recent calculations have suggested that planets in the outer regions of the HZ cannot maintain stable, warm climates, but rather should oscillate between long, globally glaciated states and shorter periods of climatic warmth. Such conditions, similar to "Snowball Earth" episodes experienced on Earth, would be inimical to the development of complex land life, including intelligent life. Here, we build on previous studies with an updated energy balance climate model to calculate this "limit cycle" region of the HZ where such cycling would occur. We argue that an abiotic Earth would have a greater CO2 partial pressure than today because plants and other biota help to enhance the storage of CO2 in soil. When we tune our abiotic model accordingly, we find that limit cycles can occur but that previous calculations have overestimated their importance. For G stars like the Sun, limit cycles occur only for planets with CO2 outgassing rates less than that on modern Earth. For K- and M-star planets, limit cycles should not occur; however, M-star planets may be inhospitable to life for other reasons. Planets orbiting late G-type and early K-type stars retain the greatest potential for maintaining warm, stable conditions. Our results suggest that host star type, planetary volcanic activity, and seafloor weathering are all important factors in determining whether planets will be prone to limit cycling.
Collapse
Affiliation(s)
- Jacob Haqq-Misra
- Blue Marble Space Institute of Science, 1001 4th Avenue, Suite 3201, Seattle, WA 98154, USA
- NASA Astrobiology Institute's Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195, USA
| | - Ravi Kumar Kopparapu
- Blue Marble Space Institute of Science, 1001 4th Avenue, Suite 3201, Seattle, WA 98154, USA
- NASA Astrobiology Institute's Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195, USA
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Mail Stop 699.0, Building 34, Greenbelt, MD 20771, USA
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - Natasha E Batalha
- NASA Astrobiology Institute's Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195, USA
- Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chester E Harman
- NASA Astrobiology Institute's Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195, USA
- Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - James F Kasting
- NASA Astrobiology Institute's Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195, USA
- Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Shields AL, Meadows VS, Bitz CM, Pierrehumbert RT, Joshi MM, Robinson TD. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. ASTROBIOLOGY 2013; 13:715-39. [PMID: 23855332 PMCID: PMC3746291 DOI: 10.1089/ast.2012.0961] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO(2) could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3-10 bar of CO(2) will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO(2) is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars.
Collapse
Affiliation(s)
- Aomawa L Shields
- Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.
Collapse
|
10
|
The Location and Styles of Ice-Free “Oases” during Neoproterozoic Glaciations with Evolutionary Implications. GEOSCIENCES 2012. [DOI: 10.3390/geosciences2020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Abbot DS, Voigt A, Koll D. The Jormungand global climate state and implications for Neoproterozoic glaciations. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015927] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Dadic R, Light B, Warren SG. Migration of air bubbles in ice under a temperature gradient, with application to “Snowball Earth”. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Abbot DS, Pierrehumbert RT. Mudball: Surface dust and Snowball Earth deglaciation. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Costas E, Flores-Moya A, López-Rodas V. Rapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments 'Noah's Arks' for photosynthesizers during the Neoproterozoic 'snowball Earth'? THE NEW PHYTOLOGIST 2008; 180:922-932. [PMID: 18803596 DOI: 10.1111/j.1469-8137.2008.02620.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Geothermal waters often support remarkable communities of microalgae and cyanobacteria apparently living at the extreme limits of their tolerance. Little is known about the mechanisms allowing adaptation of mesophilic phytoplankters to such extreme conditions, but recent studies are challenging many preconceived notions about this. The aim of this study was to analyse mechanisms allowing adaptation of mesophilic microalgae and cyanobacteria to stressful geothermal waters. To distinguish between the pre-selective or post-selective origin of adaptation processes allowing the proliferation of mesophilic phytoplankters in geothermal waters, several Luria-Delbrück fluctuation analysis were performed with the microalga Dictyosphaerium chlorelloides and the cyanobacterium Microcystis aeruginosa, both isolated from nonextreme waters. Geothermal waters from seven places in Italy and five icebound places at Los Andes in Argentina were used as selective agents. Physiological adaptation was achieved in the least toxic waters. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal for the experimental organisms. This adaptation was achieved as consequence of single mutations at one locus. It was hypothesized that a similar mechanism of rapid genetic adaptation could explain the survival of photosynthetic life during the Neoproterozoic 'snowball Earth,' where geothermal refuges such as those studied could have been 'Noah's Arks' for microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Eduardo Costas
- Genética (Producción Animal), Facultad de Veterinaria, Universidad Complutense, E-28040 Madrid, Spain
| | | | | |
Collapse
|
15
|
Langlois A, Fisico T, Barber DG, Papakyriakou TN. Response of snow thermophysical processes to the passage of a polar low-pressure system and its impact on in situ passive microwave radiometry: A case study. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jc004197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Snowball Earth prevention by dissolved organic carbon remineralization. Nature 2008; 450:813-8. [PMID: 18064001 DOI: 10.1038/nature06354] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 10/01/2007] [Indexed: 11/08/2022]
Abstract
The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.
Collapse
|
17
|
Lewis JP, Weaver AJ, Eby M. Snowball versus slushball Earth: Dynamic versus nondynamic sea ice? ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jc004037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Kasting JF, Howard MT. Atmospheric composition and climate on the early Earth. Philos Trans R Soc Lond B Biol Sci 2006; 361:1733-41; discussion 1741-2. [PMID: 17008214 PMCID: PMC1664689 DOI: 10.1098/rstb.2006.1902] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85 degrees C. We argue, following others, that this interpretation is incorrect-the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot.A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere.
Collapse
Affiliation(s)
- James F Kasting
- Department of Geosciences, Penn State University, University Park, PA 16802, USA.
| | | |
Collapse
|
19
|
Olcott AN, Sessions AL, Corsetti FA, Kaufman AJ, de Oliviera TF. Biomarker evidence for photosynthesis during neoproterozoic glaciation. Science 2005; 310:471-4. [PMID: 16195425 DOI: 10.1126/science.1115769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Laterally extensive black shales were deposited on the São Francisco craton in southeastern Brazil during low-latitude Neoproterozoic glaciation approximately 740 to 700 million years ago. These rocks contain up to 3.0 weight % organic carbon, which we interpret as representing the preserved record of abundant marine primary productivity from glacial times. Extractable biomarkers reflect a complex and productive microbial ecosystem, including both phototrophic bacteria and eukaryotes, living in a stratified ocean with thin or absent sea ice, oxic surface waters, and euxinic conditions within the photic zone. Such an environment provides important constraints for parts of the "Snowball Earth" hypothesis.
Collapse
Affiliation(s)
- Alison N Olcott
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | |
Collapse
|