1
|
Mathur R, Kang D, Napelenok SL, Xing J, Hogrefe C, Sarwar G, Itahashi S, Henderson BH. How have Divergent Global Emission Trends Influenced Long-range Transported Ozone to North America? JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:0. [PMID: 36275858 PMCID: PMC9580341 DOI: 10.1029/2022jd036926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/07/2022] [Indexed: 05/31/2023]
Abstract
Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).
Collapse
Affiliation(s)
- Rohit Mathur
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Daiwen Kang
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Sergey L. Napelenok
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Jia Xing
- Tsinghua University, Beijing, China
| | - Christian Hogrefe
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Golam Sarwar
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Syuichi Itahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Japan
| | - Barron H. Henderson
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, RTP, NC, USA
| |
Collapse
|
2
|
Satellite-Based Diagnosis and Numerical Verification of Ozone Formation Regimes over Nine Megacities in East Asia. REMOTE SENSING 2022. [DOI: 10.3390/rs14051285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Urban photochemical ozone (O3) formation regimes (NOx- and VOC-limited regimes) at nine megacities in East Asia were diagnosed based on near-surface O3 columns from 900 to 700 hPa, nitrogen dioxide (NO2), and formaldehyde (HCHO), which were inferred from measurements by ozone-monitoring instruments (OMI) for 2014–2018. The nine megacities included Beijing, Tianjin, Hebei, Shandong, Shanghai, Seoul, Busan, Tokyo, and Osaka. The space-borne HCHO–to–NO2 ratio (FNR) inferred from the OMI was applied to nine megacities and verified by a series of sensitivity tests of Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations by halving the NOx and VOC emissions. The results showed that the satellite-based FNRs ranged from 1.20 to 2.62 and the regimes over the nine megacities were identified as almost NOx-saturated conditions, while the domain-averaged FNR in East Asia was >2. The results of WRF–Chem sensitivity modeling show that O3 increased when the NOx emissions reduced, whereas VOC emission reduction showed a significant decrease in O3, confirming the characteristics of VOC-limited conditions in all of the nine megacities. When both NOx and VOC emissions were reduced, O3 decreased in most cities, but increased in the three lowest-FNRs megacities, such as Shanghai, Seoul, and Tokyo, where weakened O3 titration caused by NOx reduction had a larger enough effect to offset O3 suppression induced by the decrease in VOCs. Our model results, therefore, indicated that the immediate VOC emission reduction is a key controlling factor to decrease megacity O3 in East Asia, and also suggested that both VOC and NOx reductions may not be of broad utility in O3 abatement in megacities and should be considered judiciously in highly NOx-saturated cities in East Asia.
Collapse
|
3
|
VanCuren RT, Gustin MS. Identification of sources contributing to PM2.5 and ozone at elevated sites in the western U.S. by receptor analysis: Lassen Volcanic National Park, California, and Great Basin National Park, Nevada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:505-518. [PMID: 25864796 DOI: 10.1016/j.scitotenv.2015.03.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/16/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
The proposed revision of the United States (US) air quality standard for ozone will result in violations in sparsely populated remote rural areas in the Western US. Replicating air quality as measured at surface monitoring sites by modeling is particularly difficult in this region due to complex terrain, poorly represented in regional and global models, and uncertainties in emission rates and timing at all scales (locally as well as hundreds to thousands of km upwind). As an alternative method, a fully empirical, receptor-based scheme using in situ aerosol composition and simple meteorological variables to simulate ozone (O3) measurements was tested and found to produce O3 simulation results comparable in uncertainty to regional modeling, and supporting trajectory-based identification of O3 source regions. This approach was tested using two widely-separated (650 km) high altitude (approx. 2 km above sea level) monitoring sites, Lassen Volcanic National Park, in northern California (LAVO) and Great Basin National Park in eastern Nevada (GRBA). Comparing correlations between observed O3 and aerosols, and examining back-trajectories associated with peak concentrations for the two sites permitted distinguishing among local, distant North American, and Asian sources of particulate matter (PM2.5) and O3. This analysis indicates that anthropogenic enhancement of O3 at LAVO is primarily due to transport from Asia. Asia is also the dominant source of anthropogenic O3 at GRBA in spring, but regional North American sources of O3 appear to drive additional ozone peaks in late summer and fall at this more interior site.
Collapse
Affiliation(s)
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV 89557, USA
| |
Collapse
|
4
|
Fischer EV, Jacob DJ, Yantosca RM, Sulprizio MP, Millet DB, Mao J, Paulot F, Singh HB, Roiger A, Ries L, Talbot R, Dzepina K, Pandey Deolal S. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. ATMOSPHERIC CHEMISTRY AND PHYSICS 2014; 14:2679-2698. [PMID: 33758588 PMCID: PMC7983850 DOI: 10.5194/acp-14-2679-2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30 %), acetone (7 %), and a suite of other isoprene and terpene oxidation products (19 %). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37 %) and alkanes (14 %). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.
Collapse
Affiliation(s)
- E. V. Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - D. J. Jacob
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - R. M. Yantosca
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - M. P. Sulprizio
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
| | - J. Mao
- Princeton University, GFDL, Princeton, NJ, USA
| | - F. Paulot
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, CA, USA
| | - A. Roiger
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
| | - L. Ries
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - R.W. Talbot
- Federal Environment Agency, GAW Global Station Zugspitze/Hohenpeissenberg, Zugspitze, Germany
| | - K. Dzepina
- Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | | |
Collapse
|
5
|
Cooper OR, Gao RS, Tarasick D, Leblanc T, Sweeney C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990-2010. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018261] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Neuman JA, Trainer M, Aikin KC, Angevine WM, Brioude J, Brown SS, de Gouw JA, Dube WP, Flynn JH, Graus M, Holloway JS, Lefer BL, Nedelec P, Nowak JB, Parrish DD, Pollack IB, Roberts JM, Ryerson TB, Smit H, Thouret V, Wagner NL. Observations of ozone transport from the free troposphere to the Los Angeles basin. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016919] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Cooper OR, Oltmans SJ, Johnson BJ, Brioude J, Angevine W, Trainer M, Parrish DD, Ryerson TR, Pollack I, Cullis PD, Ives MA, Tarasick DW, Al-Saadi J, Stajner I. Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016095] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- O. R. Cooper
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - S. J. Oltmans
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - B. J. Johnson
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - J. Brioude
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - W. Angevine
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - M. Trainer
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - D. D. Parrish
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - T. R. Ryerson
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - I. Pollack
- Cooperative Institute for Research in Environmental Sciences; University of Colorado at Boulder; Boulder Colorado USA
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - P. D. Cullis
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - M. A. Ives
- Trinidad Head Observatory, ESRL; NOAA; Trinidad Head California USA
| | - D. W. Tarasick
- Experimental Studies Research Division, MSC; Environment Canada; Downsview, Ontario Canada
| | - J. Al-Saadi
- Tropospheric Chemistry Program, Earth Science Division, Science Mission Directorate; NASA; Washington D. C. USA
| | - I. Stajner
- Noblis; Falls Church Virginia USA
- Office of Science and Technology, National Weather Service; NOAA; Silver Spring Maryland USA
| |
Collapse
|
8
|
Brown-Steiner B, Hess P. Asian influence on surface ozone in the United States: A comparison of chemistry, seasonality, and transport mechanisms. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015846] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 2010; 463:344-8. [DOI: 10.1038/nature08708] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/19/2009] [Indexed: 11/08/2022]
|
10
|
Fiore AM, Dentener FJ, Wild O, Cuvelier C, Schultz MG, Hess P, Textor C, Schulz M, Doherty RM, Horowitz LW, MacKenzie IA, Sanderson MG, Shindell DT, Stevenson DS, Szopa S, Van Dingenen R, Zeng G, Atherton C, Bergmann D, Bey I, Carmichael G, Collins WJ, Duncan BN, Faluvegi G, Folberth G, Gauss M, Gong S, Hauglustaine D, Holloway T, Isaksen ISA, Jacob DJ, Jonson JE, Kaminski JW, Keating TJ, Lupu A, Marmer E, Montanaro V, Park RJ, Pitari G, Pringle KJ, Pyle JA, Schroeder S, Vivanco MG, Wind P, Wojcik G, Wu S, Zuber A. Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010816] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Helmig D, Tanner DM, Honrath RE, Owen RC, Parrish DD. Nonmethane hydrocarbons at Pico Mountain, Azores: 1. Oxidation chemistry in the North Atlantic region. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008930] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Honrath RE, Helmig D, Owen RC, Parrish DD, Tanner DM. Nonmethane hydrocarbons at Pico Mountain, Azores: 2. Event-specific analyses of the impacts of mixing and photochemistry on hydrocarbon ratios. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Huang HC, Lin J, Tao Z, Choi H, Patten K, Kunkel K, Xu M, Zhu J, Liang XZ, Williams A, Caughey M, Wuebbles DJ, Wang J. Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Jaffe D, Chand D, Hafner W, Westerling A, Spracklen D. Influence of fires on O3 concentrations in the western U.S. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5885-91. [PMID: 18767640 DOI: 10.1021/es800084k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Because forest fires emit substantial NOx and hydrocarbons--known contributors to O3 production--we hypothesize that interannual variation in western U.S. O3 is related to the burned area. To evaluate this hypothesis we used a gridded database of western U.S. summer burned area (BA) and biomass consumed (BC) by fires between 101-125 degrees W. The fire data were compared with daytime summer O3 mixing ratios from nine rural Clean Air Status and Trends Network (CASTNET) and National Park Service (NPS) sites. Large fire years exhibited widespread enhanced O3. The summer BA was significantly correlated with O3 at all sites. For each 1 million acres burned in the western U.S. during summer, we estimate that the daytime mean O3 was enhanced across the region by 2.0 ppbv. For mean and maximum fire years, O3 was enhanced by an average of 3.5 and 8.8 ppbv, respectively. At most sites O3 was significantly correlated with fires in the surrounding 5 x 5 degrees and 10 x 10 degrees regions, but not with fires in the nearest 1 x 1 degree region, reflecting the balance between O3 production and destruction in a high NOx environment. BC was a slightly better predictor of O3, compared with BA. The relationship between O3 and temperature was examined at two sites (Yellowstone and Rocky Mountain National Parks). At these two sites, high fire years were significantly warmer than lowfire years; however, daytime seasonal meantemperature and O3 were not significantly correlated. This indicates that the presence of fire is a more important predictor for O3 than is temperature.
Collapse
Affiliation(s)
- Dan Jaffe
- University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, USA.
| | | | | | | | | |
Collapse
|
15
|
Wuebbles DJ, Lei H, Lin J. Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 150:65-84. [PMID: 17714840 DOI: 10.1016/j.envpol.2007.06.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
The intercontinental transport of aerosols and photochemical oxidants from Asia is a crucial issue for air quality concerns in countries downwind of the significant emissions and concentrations of pollutants occurring in this important region of the world. Since the lifetimes of some important pollutants are long enough to be transported over long distance in the troposphere, regional control strategies for air pollution in downwind countries might be ineffective without considering the effects of long-range transport of pollutants from Asia. Field campaigns provide strong evidence for the intercontinental transport of Asian pollutants. They, together with ground-based observations and model simulations, show that the air quality over parts of North America is being affected by the pollutants transported from Asia. This paper examines the current understanding of the intercontinental transport of gases and aerosols from Asia and resulting effects on air quality, and on the regional and global climate system.
Collapse
Affiliation(s)
- Donald J Wuebbles
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 S. Gregory Street, Urbana, IL 61802, USA.
| | | | | |
Collapse
|
16
|
Parrish DD, Stohl A, Forster C, Atlas EL, Blake DR, Goldan PD, Kuster WC, de Gouw JA. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007583] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. D. Parrish
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - A. Stohl
- Department of Regional and Global Pollution Issues; Norwegian Institute for Air Research; Kjeller Norway
| | - C. Forster
- Department of Regional and Global Pollution Issues; Norwegian Institute for Air Research; Kjeller Norway
| | - E. L. Atlas
- Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science; University of Miami; Miami Florida USA
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - P. D. Goldan
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - W. C. Kuster
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - J. A. de Gouw
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| |
Collapse
|
17
|
Auvray M, Bey I, Llull E, Schultz MG, Rast S. A model investigation of tropospheric ozone chemical tendencies in long-range transported pollution plumes. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007137] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Singh HB, Brune WH, Crawford JH, Jacob DJ, Russell PB. Overview of the summer 2004 Intercontinental Chemical Transport Experiment–North America (INTEX-A). ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007905] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Weiss-Penzias P, Jaffe DA, Swartzendruber P, Dennison JB, Chand D, Hafner W, Prestbo E. Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006522] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter Weiss-Penzias
- Interdisciplinary Arts and Sciences Department; University of Washington; Bothell Washington USA
| | - Daniel A. Jaffe
- Interdisciplinary Arts and Sciences Department; University of Washington; Bothell Washington USA
| | - Philip Swartzendruber
- Interdisciplinary Arts and Sciences Department; University of Washington; Bothell Washington USA
| | - James B. Dennison
- Interdisciplinary Arts and Sciences Department; University of Washington; Bothell Washington USA
| | - Duli Chand
- Interdisciplinary Arts and Sciences Department; University of Washington; Bothell Washington USA
| | - William Hafner
- Interdisciplinary Arts and Sciences Department; University of Washington; Bothell Washington USA
| | | |
Collapse
|
20
|
Steiner AL, Tonse S, Cohen RC, Goldstein AH, Harley RA. Influence of future climate and emissions on regional air quality in California. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006935] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Roberts JM, Flocke F, Chen G, de Gouw J, Holloway JS, Hübler G, Neuman JA, Nicks DK, Nowak JB, Parrish DD, Ryerson TB, Sueper DT, Warneke C, Fehsenfeld FC. Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004960] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- James M. Roberts
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Frank Flocke
- Atmospheric Chemistry Division, National Center for Atmospheric Research; Boulder Colorado USA
| | - Gao Chen
- NASA Langley Research Center; Hampton Virginia USA
| | - Joost de Gouw
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - John S. Holloway
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Gerd Hübler
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - J. Andrew Neuman
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Dennis K. Nicks
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - John B. Nowak
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - David D. Parrish
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Thomas B. Ryerson
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Donna T. Sueper
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Carsten Warneke
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - Fred C. Fehsenfeld
- NOAA/Environmental Research Laboratory Aeronomy Laboratory and Cooperative Institute for Research in the Environmental Sciences; University of Colorado; Boulder Colorado USA
| |
Collapse
|
22
|
Parrish DD, Kondo Y, Cooper OR, Brock CA, Jaffe DA, Trainer M, Ogawa T, Hübler G, Fehsenfeld FC. Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) and Pacific Exploration of Asian Continental Emission (PEACE) experiments: An overview of the 2002 winter and spring intensives. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004980] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. D. Parrish
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - Y. Kondo
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - O. R. Cooper
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - C. A. Brock
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - D. A. Jaffe
- Interdisciplinary Arts and Sciences; University of Washington-Bothell; Washington USA
| | - M. Trainer
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - T. Ogawa
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| | - G. Hübler
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - F. C. Fehsenfeld
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| |
Collapse
|