1
|
Naranjo D. A scenario for the origin of life: Volume regulation by bacteriorhodopsin required extremely voltage sensitive Na‐channels and very selective K‐channels. Bioessays 2022; 44:e2100210. [DOI: 10.1002/bies.202100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/25/2022]
Affiliation(s)
- David Naranjo
- Instituto de Neurociencia, Facultad de Ciencias Universidad de Valparaíso Playa Ancha Valparaíso Chile
| |
Collapse
|
2
|
Daniel D, Nunes B, Pinto E, Ferreira IMPLVO, Correia AT. Assessment of Paracetamol Toxic Effects under Varying Seawater pH Conditions on the Marine Polychaete Hediste diversicolor Using Biochemical Endpoints. BIOLOGY 2022; 11:biology11040581. [PMID: 35453782 PMCID: PMC9031096 DOI: 10.3390/biology11040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Context of climate change is being widely studied, nevertheless its effects in the toxicity of other contaminants have been poorly study. Particularly, the effects of ocean acidification on the modulation of pharmaceutical absorption and consequent effects, have not been extensively addressed before. In this study, we aimed to assess the effects of ocean acidification (specifically pH values of 8.2, 7.9, and 7.6) combined with paracetamol exposure (0, 30, 60, and 120 µg/L) on the polychaeta Hediste diversicolor. To do so, specific biomarkers were measured namely (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as thiobarbituric acid reactive substance (TBARS), were quantified to serve as ecotoxicological endpoints. Alterations of CAT, and GSTs activities, and TBARS levels indicate an alteration in redox balances. Differences in exposed pH levels indicate the possible modulation of the absorption of this pharmaceutical in ocean acidifications scenarios. Alterations in AChE were only observed following paracetamol exposure, not being altered by media pH. Hereby obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of pharmaceuticals. This work is crucial to understand the potential effects of pharmaceuticals in a climate change scenario. Abstract Increasing atmospheric carbon dioxide (CO2) levels are likely to lower ocean pH values, after its dissolution in seawater. Additionally, pharmaceuticals drugs are environmental stressors due to their intrinsic properties and worldwide occurrence. It is thus of the utmost importance to assess the combined effects of pH decreases and pharmaceutical contamination, considering that their absorption (and effects) are likely to be strongly affected by changes in oceanic pH. To attain this goal, individuals of the marine polychaete Hediste diversicolor were exposed to distinct pH levels (8.2, 7.9, and 7.6) and environmentally relevant concentrations of the acidic drug paracetamol (PAR: 0, 30, 60, and 120 µg/L). Biomarkers such as catalase (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as peroxidative damage (through thiobarbituric acid reactive substance (TBARS) quantification), were quantified to serve as ecotoxicological endpoints. Data showed a general increase in CAT and a decrease in GST activities (with significant fluctuations according to the tested conditions of PAR and pH). These changes are likely to be associated with alterations of the redox cycle driven by PAR exposure. In addition, pH levels seemed to condition the toxicity caused by PAR, suggesting that the toxic effects of this drug were in some cases enhanced by more acidic conditions. An inhibition of AChE was observed in animals exposed to the highest concentration of PAR, regardless of the pH value. Moreover, no lipid peroxidation was observed in most individuals, although a significant increase in TBARS levels was observed for polychaetes exposed to the lowest pH. Finally, no alterations of COX activities were recorded on polychaetes exposed to PAR, regardless of the pH level. The obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of acidic drugs, such as PAR. This work was crucial to evidence that ocean acidification, in the context of a global change scenario of increased levels of both atmospheric and oceanic CO2, is a key factor in understanding the putative enhanced toxicity of most pharmaceutical drugs that are of an acidic nature.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro (UA), 3810-193 Aveiro, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal;
| | - Bruno Nunes
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro (UA), 3810-193 Aveiro, Portugal;
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| | - Edgar Pinto
- Escola Superior de Saúde (ESS) do Instituto Politécnico do Porto (IPP), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
- LAQV/REQUIMTE-Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4200-465 Porto, Portugal;
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE-Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4200-465 Porto, Portugal;
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal;
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS/UFP), Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Liu Y, Buchberger AR, DeLaney K, Li Z, Li L. Multifaceted Mass Spectrometric Investigation of Neuropeptide Changes in Atlantic Blue Crab, Callinectes sapidus, in Response to Low pH Stress. J Proteome Res 2019; 18:2759-2770. [PMID: 31132273 DOI: 10.1021/acs.jproteome.9b00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decrease of pH level in the water affects animals living in aquatic habitat, such as crustaceans. The molecular mechanisms enabling these animals to survive this environmental stress remain unknown. To understand the modulatory function of neuropeptides in crustaceans when encountering drops in pH level, we developed and implemented a multifaceted mass spectrometric platform to investigate the global neuropeptide changes in response to water acidification in the Atlantic blue crab, Callinectes sapidus. Neural tissues were collected at different incubation periods to monitor dynamic changes of neuropeptides under different stress conditions occurring in the animal. Neuropeptide families were found to exhibit distinct expression patterns in different tissues and even each isoform had its specific response to the stress. Circulating fluid in the crabs (hemolymph) was also analyzed after 2-h exposure to acidification, and together with results from tissue analysis, enabled the discovery of neuropeptides participating in the stress accommodation process as putative hormones. Two novel peptide sequences were detected in the hemolymph that appeared to be involved in the stress-related regulation in the crabs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Amanda R Buchberger
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Kellen DeLaney
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Zihui Li
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Lingjun Li
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States.,School of Pharmacy , University of Wisconsin , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| |
Collapse
|
4
|
Jacobson MZ. Short-Term Impacts of the Aliso Canyon Natural Gas Blowout on Weather, Climate, Air Quality, and Health in California and Los Angeles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6081-6093. [PMID: 31034217 DOI: 10.1021/acs.est.9b01495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Aliso Canyon (Porter Ranch), California, natural gas blowout lasted 112 days, from October 23, 2015 to February 11, 2016, releasing 97 100 metric tonnes of methane, 7300 tonnes of ethane, and a host of other hydrocarbons into the Southern California air. This study estimates the impacts of the leak on transient weather, climate, air quality, and health in California and the Los Angeles Basin using a nested global-through-local weather-climate-air quality computer model. Results suggest that the Aliso Canyon leak may have increased the mixing ratios of multiple emitted hydrocarbon gases throughout California. Subsequent gas-phase photochemistry increased the mixing ratios of additional byproducts, including carbon monoxide, formaldehyde, acetaldehyde, peroxyacetyl nitrate, and ozone. Increases in air temperatures aloft and lesser increases at the surface due to thermal-infrared radiation absorption by methane stabilized the air over much of California, slightly reducing clouds, precipitation, and near-surface wind speed with greater reductions in Los Angeles than in California. The reduction in precipitation, in particular, increased PM2.5 concentration, with a greater increase in Los Angeles than in California. The higher PM2.5 increased estimated premature mortality in California by +32 (9-54) to +43 (15-66), depending on the set of relative risks used. Despite higher PM2.5 in Los Angeles due to the leak, premature mortalities there were more ambiguous, ranging from a mean decrease of -7 to a mean increase of +15, for 2 simulations with different resolution and boundary conditions. The remaining mortalities occurred in the Central Valley and San Francisco Bay Area. Ozone premature mortalities away from the leak increased by <1. The study did not evaluate potential health impacts, including cancers, immediately near the leak. As such, the Aliso Canyon leak affected temperatures, pollution, and health throughout California. Future leaks will also likely have impacts.
Collapse
Affiliation(s)
- Mark Z Jacobson
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
5
|
Su W, Shi W, Han Y, Hu Y, Ke A, Wu H, Liu G. The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2987-2995. [PMID: 30373075 DOI: 10.1016/j.scitotenv.2018.10.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
The current knowledge about the effect of pCO2-driven ocean acidification on the bioaccumulation of pollutants in marine species is still scarce, as only limited types of pollutants have been investigated. Therefore, to obtain a better understanding of the effect of ocean acidification on the process of bioaccumulation and subsequent food safety, the accumulation of benzo[a]pyrene (B[a]P), chloramphenicol (CAP), and nitrofurazone (NFZ) in an edible bivalve species, Tegillarca granosa, under present and near-future ocean acidification scenarios was investigated in the present study. The health risks associated with consuming contaminated blood clams were also assessed using target hazard quotient (THQ), lifetime cancer risk (CR), or margin of exposure (MoE). To explain the alterations in bioaccumulation of these pollutants, the expressions of genes encoding corresponding key metabolic proteins were analyzed as well. The results obtained showed that ocean acidification exerted a significant effect on the accumulation of B[a]P, NFZ, and CAP in the clams. After four-week exposure to B[a]P, NFZ, or CAP contaminated seawater acidified with CO2 at pH 7.8 and 7.4, significantly greater amounts of B[a]P and lower amounts of NFZ and CAP were accumulated in the clams compared to that in the control. Although no non-carcinogenic risk of consuming B[a]P-contaminated blood clams was detected using the THQ values obtained, the CR values obtained indicated a high life-time risk in all groups. In addition, according to the MoE values obtained, the health risks in terms of consuming NFZ- and CAP-contaminated clams were significantly reduced under ocean acidification scenarios but still cannot be ignored, especially for children. The gene expression results showed that the ability of clams to eliminate B[a]P may be significantly constrained, whereas the ability to eliminate NFZ and CAP may be enhanced under ocean acidification scenarios, indicating that the changes in the accumulation of these pollutants may be due to the altered in vivo metabolism.
Collapse
Affiliation(s)
- Wenhao Su
- College of Animal Science, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Aiying Ke
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Hongxi Wu
- Zhejiang Fisheries Technology Extension Station, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
6
|
Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. GLOBAL CHANGE BIOLOGY 2018; 24:5031-5043. [PMID: 30120863 DOI: 10.1111/gcb.14424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Ocean acidification (OA), arising from the influx of anthropogenically generated carbon, poses a massive threat to the ocean ecosystems. Our knowledge of the effects of elevated anthropogenic CO2 in marine waters and its effect on the performance of single species, trophic interactions, and ecosystems is increasing rapidly. However, our understanding of the biogeochemical cycling of nutrients such as nitrogen is less advanced and lacks a comprehensive overview of how these processes may change under OA. We conducted a systematic review and meta-analysis of eight major nitrogen transformation processes incorporating 49 publications to synthesize current scientific understanding of the effect of OA on nitrogen cycling in the future ocean by 2100. The following points were identified by our meta-analysis: (a) Diazotrophic nitrogen fixation is likely enhanced by 29% ± 4% under OA; (b) species- and strain-specific responses of nitrogen fixers to OA were detectable, which may result in alterations in microbial community composition in the future ocean; (c) nitrification processes were reduced by a factor of 29% ± 10%; (d) declines in nitrification rates were not reflected by nitrifier abundance; and (e) contrasting results in unispecific culture experiments versus natural communities were apparent for nitrogen fixation and denitrification. The net effect of the nitrogen cycle process responses also suggests there may be a shift in the relative nitrogen pools, with excess ammonium originating from CO2 -fertilized diazotrophs. This regenerated inorganic nitrogen may recycle in the upper water column increasing the relative importance of the ammonium-fueled regenerated production. However, several feedback mechanisms with other chemical cycles, such as oxygen, and interaction with other climate change stressors may counteract these findings. Finally, our review highlights the shortcomings and gaps in current understanding of the potential changes in nitrogen cycling under future climate and emphasizes the need for further ecosystem studies.
Collapse
Affiliation(s)
- Nicola Wannicke
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Greifswald, Germany
| | - Claudia Frey
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, New Jersey
- Department of Environmental Sciences, University of Basel, Aquatic and Stable Isotope Biogeochemistry, Basel, Switzerland
| | - Cliff S Law
- National Institute of Water and Atmospheric Research (NIWA), Kilbirnie, Wellington, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Maren Voss
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
7
|
Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA. ATMOSPHERE 2018. [DOI: 10.3390/atmos9050180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Moss NA, Leao T, Glukhov E, Gerwick L, Gerwick WH. Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria. Methods Enzymol 2018; 604:3-43. [PMID: 29779657 DOI: 10.1016/bs.mie.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria.
Collapse
Affiliation(s)
- Nathan A Moss
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Tiago Leao
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Evgenia Glukhov
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Lena Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States.
| |
Collapse
|
9
|
Sakamoto Y, Goda M, Hirokawa J. Kinetics Study of Heterogeneous Bromine Release from the Reaction between Gaseous Ozone and Aqueous Bromide Solution. J Phys Chem A 2018; 122:2723-2731. [PMID: 29481755 DOI: 10.1021/acs.jpca.7b12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterogeneous release of molecular bromine, Br2, from the reaction between gaseous ozone and aqueous bromide ion in seawater ice and sea salt aerosols is considered to be an initial source of reactive bromine species in the troposphere. Recent studies have demonstrated that the uptake of ozone by aqueous bromide solution is promoted by reactions at the gas-liquid interface. The present work investigated the heterogeneous reaction between gaseous ozone and aqueous bromide solution at atmospheric pressure and room temperature using a wetted wall flow reactor combined with a chemical ionization mass spectrometer. The emission rate of Br2 was measured as a function of gaseous ozone concentration, aqueous bromide concentration, and pH. In addition, we conducted a simple kinetics model simulation that included only bulk aqueous-phase reactions and compared the theoretical values with the experimentally determined values. The Br2 emission rates measured experimentally differ from the simulated rates at relatively high bromide concentration, as well as in the pH region of 6-9. These differences might be explained by different Br- concentration and/or deprotonation efficiency near the interface region and those in the bulk solution.
Collapse
|
10
|
Wang L, Li Q, Bi H, Mao XZ. Human impacts and changes in the coastal waters of south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:108-114. [PMID: 27099994 DOI: 10.1016/j.scitotenv.2016.03.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Human impact on the environment remains at the center of the debate on global environmental change. Using the Hong Kong-Shenzhen corridor in south China as an example, we present evidence that rapid urbanization and economic development in coastal areas were the dominant factors causing rapid changes in coastal waters. From 1990 to 2012, coastal seawater temperature increased ~0.060°C per year, sea level rose 4.4mm per year and pH decreased from 8.2 to 7.7, much faster than global averages. In the same period, there were exponential increases in the local population, gross domestic product and land fill area. Empirical analyses suggest that the large increase in the population affected local temperature, and economic development had a major impact on local pH. Results also show that pH and temperature were significantly correlated with local sea level rise, but pH had more predictive power, suggesting it could be considered a predictor for changes in local sea level. We conclude that human activities could significantly exacerbate local environmental changes which should be considered in predictive models and future development plans in coastal areas.
Collapse
Affiliation(s)
- Linlin Wang
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Qiang Li
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Hongsheng Bi
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20688, United States.
| | - Xian-Zhong Mao
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China.
| |
Collapse
|
11
|
Clarke JS, Achterberg EP, Rérolle VM, Abi Kaed Bey S, Floquet CF, Mowlem MC. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements. Anal Chim Acta 2015; 897:69-80. [DOI: 10.1016/j.aca.2015.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
12
|
Heijerick DG, Regoli L, Carey S. The toxicity of molybdate to freshwater and marine organisms. II. Effects assessment of molybdate in the aquatic environment under REACH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:179-187. [PMID: 22854089 DOI: 10.1016/j.scitotenv.2012.05.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/10/2012] [Accepted: 05/22/2012] [Indexed: 06/01/2023]
Abstract
The REACH Molybdenum Consortium initiated an extensive research program in order to generate robust PNECs, based on the SSD approach, for both the freshwater and marine environments. This activity was part of the REACH dossier preparation and to form the basis for scientific dialogues with other national and international regulatory authorities. Chronic ecotoxicity data sets for the freshwater and marine environments served as starting point for the derivation of PNECs for both compartments, in accordance with the recommended derivation procedures established by the European Chemicals Agency (ECHA). The HC(5,50%)s that were derived from the generated Species Sensitivity Distributions were 38.2 mg Mo/L and 5.75 mg Mo/L for the freshwater and marine water compartment, respectively. Uncertainty analysis on both data sets and available data on bioaccumulation at high exposure levels justified an assessment factor of 3 on both HC(5,50%) leading to a PNEC(freshwater) of 12.7 mg Mo/L and a PNEC(marine) of 1.92 mg Mo/L. As there are currently insufficient ecotoxicological data available for the derivation of PNECs in the sediment compartment, the equilibrium partitioning method was applied; typical K(D)-values for both the freshwater and marine compartments were identified and combined with the respective PNEC, leading to a PNEC(sediment) of 22,600 mg/kg dry weight and 1980 mg/kg dry weight for freshwater and marine sediments, respectively. The chronic data sets were also used for the derivation of final chronic values using the procedures that are outlined by the US Environmental Protection Agency for deriving such water benchmarks. Comparing PNECs with FCVs showed that both methodologies result in comparable protective concentration levels for molybdenum in the environment.
Collapse
Affiliation(s)
- D G Heijerick
- ARCHE-Assessing Risks of Chemicals, Stapelplein 70 box 104, Gent, Belgium.
| | | | | |
Collapse
|
13
|
Barbaglio A, Tricarico S, Ribeiro A, Ribeiro C, Sugni M, Di Benedetto C, Wilkie I, Barbosa M, Bonasoro F, Candia Carnevali MD. The mechanically adaptive connective tissue of echinoderms: its potential for bio-innovation in applied technology and ecology. MARINE ENVIRONMENTAL RESEARCH 2012; 76:108-113. [PMID: 21864892 DOI: 10.1016/j.marenvres.2011.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/01/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
Echinoderms possess unique connective tissues, called mutable collagenous tissues (MCTs), which undergo nervously mediated, drastic and reversible or irreversible changes in their mechanical properties. Connective tissue mutability influences all aspects of echinoderm biology and is a key-factor in the ecological success of the phylum. Due to their sensitivity to endogenous or exogenous agents, MCTs may be targets for a number of common pollutants, with potentially drastic effects on vital functions. Besides its ecological relevance, MCT represents a topic with relevance to several applied fields. A promising research route looks at MCTs as a source of inspiration for the development of novel biomaterials. This contribution presents a review of MCT biology, which incorporates recent ultrastructural, biomolecular and biochemical analyses carried out in a biotechnological context.
Collapse
Affiliation(s)
- A Barbaglio
- Biology Dept., University of Milan, via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Carlin F, Brillard J, Broussolle V, Clavel T, Duport C, Jobin M, Guinebretière MH, Auger S, Sorokine A, Nguyen-Thé C. Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Jacobson MZ. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013795] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Smith LM, Whitehouse S, Oviatt CA. Impacts of Climate Change on Narragansett Bay. Northeast Nat (Steuben) 2010. [DOI: 10.1656/045.017.0106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Jacobson MZ, Streets DG. Influence of future anthropogenic emissions on climate, natural emissions, and air quality. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011476] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Jacobson MZ, Kaufman YJ, Rudich Y. Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008922] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|